

Self-organizing Computation

A Framework for Generative Approaches to Architectural Design

by

Taro Narahara

Master of Science in Architectural Studies, Massachusetts Institute of Technology, 2007
Master of Architecture, Washington University in St. Louis, 1997

Bachelor of Science in Mathematics, Waseda University, Tokyo, Japan, 1994

Submitted in partial fulfillment of the requirements for the degree of

Doctor of Design

At the Harvard University Graduate School of Design

September 2010

Copyright 2010 by Taro Narahara
All rights reserved

Thesis Committee Chairman:

Martin Bechthold
Professor of Architectural Technology

Self-organizing Computation

A Framework for Generative Approaches to Architectural Design

by

Taro Narahara

Master of Science in Architectural Studies, Massachusetts Institute of Technology, 2007
Master of Architecture, Washington University in St. Louis, 1997

Bachelor of Science in Mathematics, Waseda University, Tokyo, Japan, 1994

Submitted in partial fulfillment of the requirements
for the degree of
Doctor of Design

at the Harvard University Graduate School of Design

September 2010

Copyright © 2010 by Taro Narahara

The author hereby grants Harvard University permission to reproduce and distribute copies of this thesis
document, in whole or in part, for educational purposes.

Signature of the Author...

Taro Narahara
Harvard University Graduate School of Design

Certified by...
Martin Bechthold

Professor of Architectural Technology
Thesis Committee, Chairman

Accepted by...
Antoine Picon

Professor of the History of Architecture and Technology
Director, Doctor of Design Program

Harvard University Graduate School of Design

iii

Abstract

This thesis proposes a conceptual framework for applications of self-organizing logics in
generative design systems. The methods introduced in this thesis are in an abstract and
conceptual form that explores one possible future direction of computational design
strategy. In order to explain the potential of this problem-solving direction, general
aspects of what our contemporary practice in architecture and urban design is facing will
be discussed in response to the increasing complexity in our culture. However, the main
focus of this thesis is not on providing immediate solution methods to resolve any
specific professional problems in contemporary architecture. Rather, the thesis
investigates the emergent characteristics of this method that can potentially evolve new
design solutions over time, and shows how tools employing the method can be used for
design collaboration with humans, rather than simply as passive evaluation and analysis
tools. The thesis foresees important potential for this new design direction inspired by
self-organizing computation (SOC) and speculates regarding its potential areas of
application in architecture and urban design.

In recent years, many scientists have started to gain the advantages of self-organizing
systems in nature through their computational models in areas such as telecommunication
networks and robotics. Main advantages of such systems are robustness, flexibility,
adaptability, concurrency, and distributedness.

One of the unique characteristics of SOC is its non-reliance on any external knowledge.
As with many conventional computational methods in architecture, imposing existing
design patterns or transformation sequences is beneficial when one wants to efficiently
derive what appear to be the subjects of our recognitions. However, reliance on a pre-
existing template might preclude the possibility of discovering what original inputs
naturally turn into.

SOC is a computational approach that brings out the strengths of the dynamic
mechanisms of self-organizing systems: structures appear at the global level of a system
from interactions among its lower-level components. In order to computationally
implement the mechanisms, the system’s constituent units (subunits) and the rules that
define their interactions (behaviors) need to be described. The system expects emergence
of global-scale spatial structures from the locally defined interactions of its own
components.

iv

Acknowledgments

I would like to sincerely thank Professor Martin Bechthold for his valuable comments
and feedback. Through his critical guidance, he has been helping me build an academic
foundation in the field of architectural research. Without his persistent help this
dissertation would not have been possible. I also thank him for the opportunity to work
on robotic fabrication as a research fellow for two years.

Without meeting Professor Kostas Terzidis, I could never have reached where I am now.
His unique philosophical insights in computation, architecture, and complexity theory
will continue to inspire me. I am deeply grateful for his continuous encouragement,
guidance, and support during the research process.

I would also like to thank Professor Takehiko Nagakura – a man with a rare ability to
integrate practice and academics – for his insightful guidance and constant support during
the development of this thesis. He has been my academic adviser since I first came to
MIT, and has been a superb mentor and educator.

I would also like to extend my sincerest thanks to President Ito at Forum8 Co. Ltd. in
Tokyo, Japan, and to Dr. Kobayashi Yoshihiro for leading the virtual reality research
group, and for their constant support for my interests in agent-based simulation.

I am also indebted to Professor Ingeborg Rocker at the Graduate School of Design for
giving me the opportunity to teach at GSD. Teaching and running Rhinoscript and
processing workshops added another exciting element to my Harvard life.

I would like to thank Dr. Robert A. Irwin at MIT for his guidance on academic writing
and for his suggestions about readings on the topics of emergence and self-organization.

I want to give a special mention to Professor Larry Kubota for his continuous
encouragement, guidance, and support during the research process; to Professor Shun
Kanda for the opportunity to assist his advanced design studio at MIT; and to my former
employers Professor Hiroto Kobayashi and Richard Gluckman. I am also grateful to
Professor Adrian Luchini, my mentor as an architect, and to my colleagues at Harvard
and MIT: Katsunobu Sasanuma, Kenfield Griffith, Jae Wan Park, and Shouhei
Matsukawa.

v

Finally, I would like to sincerely thank my parents for their limitless support and
understanding. I have respected my father’s extremely diligent attitude toward his
academic research, and have followed his path. I admire my mother’s strength for
supporting my family when we were weak. I would also like to thank my grandmother,
who passed away this March. She was one year short of one hundred years old, and I
could never beat her at Reversi or any puzzles. I would like to dedicate this dissertation to
my father, who passed away last year.

vi

The Committee Members for this thesis are

...
Martin Bechthold

Professor of Architectural Technology
Thesis Committee, Chairman

Harvard University Graduate School of Design

...
Kostas Terzidis

Associate Professor of Architecture
Thesis Committee, Adviser

Harvard University Graduate School of Design

...
Takehiko Nagakura

Associate Professor of Design and Computation
 Thesis Committee, Adviser

Massachusetts Institute of Technology

vii

To my parents,

and in memory of

my father,

Yoshiyuki Narahara,

and my grandmother,

Chika Hiroe

Table of Contents:

viii

Table of Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

 1.1 Space + Time 2

 1.2 Complexity, Time, and Adaptation 2

 1.3 Technological Advancement 5

 1.5 Definitions 6

 1.5 Computation Systems 9

 1.6 Hypothesis 10

 1.4 Outline of Chapters 12

2 General Characteristics of Self-organizing Strategies 13

 2.1 Natural Systems and Their Computational Simulations 14
 2.1.1 Introduction 14

 2.1.2 Self-organization 15

 2.1.3 Synthetic versus Natural Systems 19

 2.1.4 Collective Construction 21

 2.1.5 Applications of Self-organization 29

2.2 Artificial Systems 35
 2.2.1 Reframing Human Design Activities 35

 2.2.2 Physical Implementations 42

 2.2.3 Metabolist Movement - Scale and Size of Subunits 42

 2.2.4 Process Planning by Isozaki 44

 2.2.5 Construction Automation during the 1980s in Japan 45

 2.2.6 Swarm Intelligence: Self-reconfigurable Robots 49

 2.2.7 Self-Replicating Machines: 3D Printers 53

2.3 Urban-Scale Systems: City Formation and Emergent Growth 56

2.3.1 Kowloon Walled City – Architecture in a State of Anarchy 56

2.3.2 Participatory Design Guided by Professionals 61

Review of Urban Simulations: Computational Methods 65

2.3.3 Fractals, DLA, and Agents: Examples from M. Batty at CASA 65

2.3.4 Shape Grammar and L-System: City Engine 67

2.3.5 Superimposition Technique by C. Alexander and M. L. Manheim 72

Table of Contents:

ix

2.4 Summary and Analysis of the Background 76

2.4.1 Subunits 77

2.4.2 Scale 78

2.4.3 Time 80

2.4.4 Discussion and Critique 81

2.4.5 Conclusions 84

3: Computational Methods of Self-organization 86

 3.1 Computational Methods: Three Phases of Computational Applications in Design 87

 3.1.1 Method 1: Evaluation 88
 - Quantitative / Qualitative Evaluation 88

 3.1.2 Method 2: Design Search 90

- Deterministic / Non-deterministic Search 92

- Genetic Algorithm (GA) 93

- Traveling Salesman’s Problem (TSP) 94

- Multi-objective Optimization Problems (MOP) 96

 Plain Aggregation Methods (Weighted-sum) 97

 Population-based Non-Pareto Approaches 97

 Pareto-based Approaches 98

- Qualitative Evaluations 99
 Interactive GA 100

 Feedback from Physical Experiments 101

- Projecting an Arrow from Method1 to Method2 101
 Bayes’ Theorem 102

 From Pedestrian Simulation to Topology Optimization 102

 Flipping the Arrow 104

 3.1.3 Method 3: Growth + Adaptation 106

- Fibonacci Sequence 107

- Evolutionary Game 108

- Examples: 110
 A. Conventional Renovation Scenarios 110

 B. Modular System (Kit-of-Parts) 110

 C. Self-organizing Growth 111

3.2 Self-organizing Computation 113

3.2.1 Self-organizing Computation 113

3.2.2 Key Attributes of Self-organization 113

3.2.3 Key Properties of Self-organizing Phenomena 115

3.2.4 Emergent Formations: Examples of Self-organizing Computation 116

3.2.5 Lane Formation 117

3.2.6 Circle Packing 124

3.3 Concluding Note: Trans-dimensional Topology Concept 128

Table of Contents:

x

4 Experiments in Evaluation and Search (Design Search) 131

4.1 Evaluation: Implementing Physical Reactions to CAD System 132

 4.1.1 Elastic Spring Mass Object 133

 4.1.2 Finite Difference Method 137

 4.1.3 Stress Display 138

 4.1.4 Kinetic Objects 141

4.2 Design Search: Turtle Implementation of L-system 143

 4.2.1 Introduction 143

 4.2.2 Method 143

 4.2.3 Design Generator (Building Engine) 144

 4.2.4 Generative Grammar Instructions 146

 4.2.5 Evaluation Sequence Using Evolutionary Computation 147

 4.2.6 Auto-Generation of Design Patterns 150

 4.2.7 Fitness Functions: Evaluations 151

 4.2.8 Evolutionary Runs 155

 4.2.9 Procedural Representation Using Parametric L-System 158

 4.2.10 Future Works 160

5 Experiments in Growth and Adaptation 161

5.1 Growth: Diffusion-limited Aggregation (DLA) 162

 5.1.1 Laplacian DLA Model Based on a Probability 163

 5.1.2 Architectural Applications of DLA 165

 5.1.3 Conclusion for DLA Experiments 176

5.2 Adaptation: Physical implementation 178

 5.2.1 Distributed Systems 179

 5.2.2 The Nelder-Mead Method: Physical Implementation 183

 5.2.3 Discussion and Critique 189

 5.2.4 Conclusion 191

6 Application of Self-organizing Computation: From Prediction to Synthesis 193

6.1 Objectives 197

6.2 Emergent Design System 199

 6.2.1 Development of a Design System: Technical Note 199

 6.2.2 Environment 199
 - Terrain Generation 199

 - Importing Surfaces 200

 - Random Midpoint Displacement Method 201

 - Noise Functions: 202

Table of Contents:

xi

 6.2.3 Agents as Wandering Settlers: 203
 - Time Scale: 205

 - Attraction to Slope: 206

- Slope Definition by Agents: 206

- Traffic Intensity: Chemical Trail 208

- Chemical-reduction Rate (Decay Rate) 210

- Diffusion Rate 211

- Attraction to Destinations: 211

- Direct Path Systems: 212

 6.2.4 T + D Model 214
 - Minimal Way Systems 216

 6.2.5 S + T + D Model 219
 - Summary of Results 231

 6.2.6 Emergent Behaviors of Agents 232

- Early Periods 232

- City Emergence 236

- Itinerary for Agents 237

- Building Behaviors 242

 - Negotiation between Agents and Buildings 245

 6.2.7 Experiments 247
 - Results 250

6.3 Conclusion 261

6.3.1 Degree of Reliance on External Knowledge 261

6.3.2 Scale of Space and Time 262

6.3.3 Limitations 263

6.3.4 Future Work 266

7 Conclusions 269

 7.1 Two Difficulties in Computational Approaches to Generative Design in Architecture
 271

 7.2 Two Common Approaches 271

- Reduce Possibilities and Choose among a Smaller Subset 272

- Employ Methods That Feature Self-directed Solution-seeking Behaviors 273

 7.3 Summary: Comparison of Proposed Systems 275

 7.4 Application Areas That Benefit from the Advantages of Self-organizing Computation

- Growth Model 284

- Performance-based Design 285

- Objectives in Transition 285

- Decentralized Systems and System Control 286

Table of Contents:

xii

 7.5 Remarks and Implications 288

- Explicit or Gradient Representations 288

- Degree of Reliance on External Knowledge 289

- Induction Methods 290

- Modeling and Designing (Simulation and Generation) 292

- Future Research 293

- A Question about Application Scales and Areas 293

Appendix: 296

List of Figures

References 297

Relevant Publications by the Author 305

Chapter 1: Introduction

1

Chapter 1

Introduction

This thesis proposes a conceptual framework for applications of self-organizing logics in

generative design systems. The methods introduced in this thesis are in an abstract and

conceptual form that explores one possible future direction of computational design

strategy. In order to explain the potential of this problem-solving direction, general

aspects of what our contemporary practice in architecture and urban design is facing will

be discussed in response to the increasing complexity in our culture. However, the main

focus of this thesis is not on providing immediate solution methods to resolve any

specific professional problems in contemporary architecture. Rather, the thesis

investigates the emergent characteristics of this method that can potentially evolve new

design solutions over time, and shows how tools employing the method can be used for

design collaboration with humans, rather than simply as passive evaluation and analysis

tools. The thesis foresees important potential for this new design direction inspired by

self-organizing computation and speculates regarding its potential areas of application in

architecture and urban design.

Chapter 1: Introduction

2

1.1 Space + Time

In today’s design methodologies, we normally try to anticipate all current and future

design requirements and potential changes for buildings prior to construction and

endeavor to resolve all issues in a single static solution. However, this static solution may

not always be able to respond to ongoing radical population growth and environmental

changes. Moreover, the physical scale of buildings and the complexity involved in

building programs have been increasing to unprecedented levels. In such conditions,

increased use of process-based four-dimensional design strategies (space + time) can be

anticipated.

This four-dimensional design thinking is not only promising for developing more flexible

and adaptable architecture, but also for expanding the territory of design to systems issues.

The thesis investigates the potential of architecture and urban design being a system that

can grow over time and argues that the computational strategies inspired by self-

organizing logics are a promising direction for establishing such systems. The neglected

feasibility and application area of extensible systems in architecture will be reviewed, and

the thesis speculates as to the possibilities of open frameworks for design using

computational methods.

1.2 Complexity, Time, and Adaptation

One of the main concerns in architecture today is the increasing quantity of information

to be processed during design and the level of complexity involved in most building

projects. As globalization and economic development increase, large-scale urban

Chapter 1: Introduction

3

development has become ever more essential. Complex threads of relationships among

buildings and urban infrastructures are intertwined to produce inseparable connections.

Dependencies among these structures are extremely intense, not only pragmatically but

also aesthetically. Nearly half a century ago, Christopher Alexander (1964) already

foresaw these conditions and stated the following:

In any case, the culture that once was slow-moving, and allowed
ample time for adaptation, cannot keep up with it. No sooner is
adjustment of one kind begun than the culture takes a further turn and
forces the adjustment in a new direction. No adjustment is ever
finished. And the essential condition on the process – that it should in
fact have time to reach its equilibrium – is violated.

Nowadays, most buildings and infrastructure designs require dynamic and collaborative

engagements by multiple professionals, and a conventional knowledge-based approach

alone may not be able to respond to emerging building types. For example, housing

projects for thousands of people have been emerging in urban areas, and demands for

planning and design of buildings with multiple occupancies and complex programs are

becoming a challenge. The social impact of such buildings can completely alter the

behavioral dynamics and physical conditions of local environments, and often lead to

redefinitions of transportation systems and infrastructures at far greater scales. Moreover,

lack of flexibility and adaptability to ever-changing environments has resulted in the need

to carry out expensive and invasive operations of demolition and reconstruction.

Conventional solutions for multifunctional large-scale complexes, high-rise office towers,

and housing complexes are often to design a plan resolving all the problems within a

Chapter 1: Introduction

4

single floor and simply stack one on top of another (Figure 1.1). This approach may

satisfy a quantity of initial requirements on a temporary basis; however, there are always

other potential spatial configurations worthy of investigation. Selecting optimal solutions

that can accommodate unpredictable additions and renovations for the future adaptation

has become a difficult task for architects. Our ultimate goals for successful design have

shifted to seeking solutions for satisfying more long-term needs in a flexible manner. In

response to the increasing complexity in our culture, pioneering works using

computational design methods are reviewed. Advantageous use of computation to resolve

these complexities is reviewed and advanced in this thesis.

Figure 1.1 – In these high-rise residential towers in Hong Kong, housing thousands of people,
identical floors are simply stacked one on top of another.

Chapter 1: Introduction

5

There have been some efforts to create physical architectural systems that can actively

accommodate future changes of their environments and emerging new objectives.

Development of flexible and adaptable architecture has been a perennial theme among

practitioners, and some of the practical limitations seen among the attempts by

Metabolists in the 1960s clearly indicate the difficulties of designing universal subunits

that could endlessly tolerate technological, environmental, and circumstantial changes

associated with structures. In such cases, goals and objectives of buildings are also often

dynamic properties of the structures, and design systems for such structures may require

abilities to simulate and foresee unknown objectives from initial sets of essential

conditions. This thesis investigates new possibilities of developing physical architectural

systems with regard to current technological developments.

1.4 Technological Advancement

In addition to the emerging complexities in our building programs, recent advances in

engineering have allowed architects to envision building structures as active responsive

and performative units on far greater scales, and have started to introduce additional

layers of complexity into building design. For example, new construction materials such

as ultra-high-strength concrete can span far greater lengths and expand architectural

scope and possibilities. Moreover, recent advancements in sensor technologies have

opened possibilities for buildings to have active adaptable mechanisms.

These technical innovations are widening our solutions to current architectural problems;

however, our current design strategies are not capable of fully utilizing these rapidly

Chapter 1: Introduction

6

expanding technological possibilities in architecture and urban development. Linear

summations of knowledge-based conventional design strategies alone may not provide

optimal solutions from widening spatial design repertoires, and new types of design

strategies are anticipated.

1.5 Definitions

In architectural design, some building types require fewer changes in the future, but some

require more. Besides seeking to minimize the need for future alterations or to economize

on projected future costs of preventable maintenance work, the design methods aim, from

the outset of design processes, at producing completed buildings that can tolerate as many

future conditions as possible. Usually these processes are conducted by a professional

(architect) as a leader, and the design directions are provided through comprehensive

blueprints. In architecture, design and construction processes that satisfy conventional

problems are empirically known to some extent as building typology and established

construction methods. I will call this type of design approach “top-down.”

In this design process, after a series of refinements through various design phases,

physical construction usually follows based on the blueprints established at the earlier

stages of design; therefore the system has the least tolerance for spontaneous changes

from lower-level components during or after the construction. There will be fewer

dynamic changes. This fact makes our construction process vulnerable to any type of

change, such as changes in physical environments, numbers of occupancies, or types of

specific uses. In other words, almost every possible scenario relating to the uses of the

Chapter 1: Introduction

7

buildings has to be anticipated and analyzed in advance to fulfill all kinds of

consequential future requirements.

On the other hand, some buildings do not include a comprehensive solution for all the

potential scenarios of the future from the outset. Instead, some of those buildings possess

systems that allow them to adapt to future changes over time by altering their designs

spontaneously based on simultaneous feedback from a number of simple entities (or

agents) inside the system. These feedback systems can be effectively distributed to

formulate globally satisfactory working solutions as a collective result. These methods do

not always guarantee the best solution in a deterministic sense; however, they may prove

effective where there is no deterministic and analytical means to derive solutions. As a

natural consequence of adapting to radical population growth, sometimes these

characteristics can be seen in low-cost housing developments in less regulated zones with

no supervision by professionals. These developments from human designs, which will be

reviewed in the next chapter, do not provide completely positive results; however,

characteristics of dynamic adaptations seen in these examples suggest ideas for future

computational implementations. I will call this type of design approach “bottom-up.”

Distributed control is one technical strategy to realize a feedback system inside a bottom-

up system, and this strategy can be applied to control not only of a single structure but

also of multiple structures. Inputs for this feedback system are fed from separated nodes

and can be triggered by participation of independently acting agents with some

intelligence. The entire system’s behavior is a result of feedback from multiple intelligent

Chapter 1: Introduction

8

sources, and this system is often called “collective intelligence.” Participatory design is

one application of this concept through human group participation.

Self-organization is a characteristic that can be found in systems of many natural

organisms: flocking of birds, collective building behaviors by various social animals and

insects, pigmentations of cells in animal skin patterns, formation of dunes by sand

particles, and so on. These behaviors are often called emergent behaviors, and emergence

refers to “the way complex systems and patterns arise out of a multiplicity of relatively

simple interactions,” according to Camazine et al. (2002). Original theories of self-

organization, developed in the context of physics and chemistry, are defined as the

emergence of macroscopic patterns out of processes and interactions defined at the

microscopic level (Nicolis and Prigogine, 1977; Haken, 1983). Such systems’ behaviors

display many characteristics that are similar to the aforementioned bottom-up approach in

some artificial systems.

Not only in natural systems have we witnessed self-organizing growth processes, but also

in some artificial systems. Beyond the scale of buildings, we have witnessed self-

organizing growth processes in many formations of cities on large scales over long spans

of time. Although results of these processes are not always successful in all aspects of

design, the processes display heuristic and almost trial-and-error types of approaches that

are robust and flexible enough to dynamically adapt to ever-changing environments. As

the cities deliberately created by designers and planners rarely display the level of

flexibility seen in these spontaneous city growth patterns, it is worth investigating their

characteristics. Rigorous computational reinterpretation and application of the underlying

Chapter 1: Introduction

9

principles behind artificial self-organizing phenomena will possibly enhance and

elaborate the advantages of these systems up to a more practical level.

1.6 Computation Systems

In design and computation in architecture, fundamental difficulties of developing

generative design systems include the multiple objectives typical of an architectural

design problem and the considerable size of the search space that contains possible

architectural solutions. The aforementioned technical advancements, emerging new

building types and uses, and increasing information to be processed, are primary causes

of the exponential increase of the search space in architectural design instances.

Combinatorics, brute-force search, a process of elimination, and generalization and

simplification of problem frameworks are some of the conventional approaches in

generative design, but these strategies alone are nevertheless unable to efficiently respond

to the aforementioned complex conditions. In the case of adaptable growth models,

objectives are also ever-changing dynamic properties of the models, and the

computational design systems of such models are expected to possess certain solution-

seeking behaviors that can maneuver through the dynamic “solution-scape.”

Development of adaptive design systems may benefit from active implementations of

self-organizing logic by gaining its characteristics, such as flexibility, adaptability, and

tolerance for growth; otherwise, reconstructions of emerging large-scale structures

impose enormous costs and social impacts. In recent years, many scientists have started

to obtain the advantages of self-organizing systems in nature through their computational

Chapter 1: Introduction

10

models (Bonabeau et al., 1999). The main advantages of such systems are robustness,

flexibility, adaptability, concurrency, and multiplicity. In the bio-inspired computation

field, application of ants’ foraging behaviors to telecommunication networks

(Schoonderwoerd, 1996; Di Caro, 1997) and control of multiple robots (swarm robotics)

(Lipson, 2006; Murata, 2006) are a few examples of applications that use distributed

controls to gain more flexibility and robustness in their systems. In this thesis,

computational methods inspired by self-organization will be called “self-organizing

computation,” and detailed descriptions of this phenomenon will be provided in chapter 3.

A question arises from the observation of the recent technical developments inspired by

self-organization in natural systems: Is there any place for such applications in

architecture? What are the computational methodologies that enable such emergent

formation processes? Can such methodologies be applied to development of a

computational tool that can contribute to generation of architectural instances? What are

the potential implementation areas in architecture?

1.7 Hypothesis

As I mentioned earlier, a bottom-up approach will not be the universal solution for all

building types. Many existing building types have very clear scope for future scenarios

and no particular future adaptations are required. Existing methods seem to provide

efficient controls for a majority of architectural projects. However, once unpredictability

and complexity of systems reaches beyond a certain critical limit, top-down deterministic

solutions alone may not be able to respond to all the potential future conditions. There are

Chapter 1: Introduction

11

obvious limitations in existing top-down design strategies and centrally controlled

systems when they are called on to support adequate flexibility and extensibility in order

to manage the overwhelmingly increasing quantities and complexity of information that

are processed during design and construction phases. The hypothesis of this thesis is that

the computational implementation of self-organizing principles is one potentially

valuable strategy to improve the design of systems that are required to change over time.

In line with Alexander’s prediction half a century ago (Alexander, 1964) about the

rapidly changing culture of his day, I speculate that there will be more demands for

buildings to be able to adapt to newly emerging needs for different qualities and

quantities of architectural and urban-scale components. Within the limited allowable

growth areas in dense urban settings, the desire to be able to accommodate new needs

will increase demand for more adaptable buildings that can avoid future demolitions or

drastic reconstructions. As one possible adaptation to likely future conditions, this thesis

proposes active incorporation of the self-organizing approach into our existing models of

designs.

This approach has considerable potential in architectural and urban-scale applications. I

believe that architectural design and construction processes can benefit from the

application of decentralized thinking as a core ideological innovation, and this thesis

responds to the issues discussed above by proposing self-organizing computation as a

strategy to provide possible alternative solutions for architecture and urban design

problems.

Chapter 1: Introduction

12

1.8 Outline of Chapters

Chapter 2 reviews existing examples of self-organization and emergent formations from

various natural systems. Then, current states of certain artificial systems, including

modular systems and urban-scale city growth simulations, are reviewed and discussed. A

critical overview and comparison of natural and artificial systems is made, based on the

relative time span and scale of each system.

Chapter 3 introduces the basic framework of computational methods related to the

concept of emergence. I categorize computational methods according to three

evolutionary stages of applications to design – evaluation, design search, and growth and

adaptation. In each category, relevant computational algorithms are introduced and their

correlation with existing design precedents is explained. After the definitions of three

methods, the concept of self-organizing computation is introduced as one strategy of a

growth and adaptation method. Two examples of self-organizing computation are

provided to support the conceptual discussion.

Chapter 4 elaborates on the architectural implementation of two computational methods

introduced in the previous chapter: evaluation and design search. These methods are

applied to the framework of architectural design problems with programmatic

requirements within spatiotemporal settings. I examine a spring-mass system as an

example of evaluation, and a turtle interpretation of L-system as an example of design

search. The implementation is unique in its application contexts and is kept at the

conceptual level of applications for the sake of logical clarity.

Chapter 1: Introduction

13

Chapter 5 presents two examples of architectural implementation of the growth and

adaptation method. The first shows growth models using diffusion-limited aggregation

(DLA); the second shows physical implementation in architecture using a multi-

dimensional optimization method. The concept of growth and adaptation is the main

focus of the thesis, and the two examples here establish conceptual foundations for a

more elaborate application of growth and adaptation in the next chapter.

Chapter 6 integrates all knowledge from the previous chapters and presents a

spatiotemporal growth and adaptation system in an urban-scale setting. This system

undertakes to simulate evolution of city growth based on the correlation between

landform and man-made artifacts. The key concept of the system is bidirectional

feedback between environments and subjects under the design. Environments and man-

made artifacts such as streets and buildings take coevolutionary paths of development.

The results obtained add to our knowledge of how far we can develop design without

relying on imposition of knowledge external to a system.

Chapter 7 provides general conclusions and an outline of future work. Advantages and

limitations of the methods explored are summarized.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

13

Chapter 2

General Characteristics of

Self-organizing Strategies and Their
Computational Simulations

Introduction

This chapter reviews relevant examples of emergence and self-organization from natural

systems and artificial systems. In addition, I have prepared a separate section to review

self-organizing phenomena on the urban scale. Several computational systems that

simulate and generate urban growth patterns are also reviewed. After the review, a

critical overview and comparison of natural and artificial systems is made based on the

relative time scale and the size of each system.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

14

2.1 Natural Systems

2.1.1 Introduction

The existence of a single strong concept or directive as a dominant driving motivation for

the building design is often advantageous in architectural design. Working with a strong

conceptual direction helps us to conceive a macroscopic framework from the earlier

stages of building design processes, and it also helps to maintain cohesion down to the

details throughout the processes. This approach often provides consistency in aesthetic

qualities. Many signature expressions by master designers have been accomplished by

this approach, having clear blueprints and goals from the outset. In general, architectural

design processes tend to start by defining macroscopic views by setting clear goals, and

then to resolve and elaborate microscopic details based on the initially defined goals.

However, as the number of elements in building programs increases, conforming to an

original core design concept while maintaining cohesion throughout all the elements of

building design has become a challenge. This approach may itself cause various

compromises in performance of buildings, and undesirable allocations of various

secondary programming elements can occur inside the buildings. Mere aesthetic

preference may not be a good motivation for design of complex structures with greater

programmatic requirements. Furthermore, obsession with certain formal aesthetics,

compulsive ideological connotations, or preconceptions about spatial relationships can

occasionally be dangerous by imposing directives that are external to the essential

characteristics of the buildings. To avoid these dangers, either derivation of the final form

can be delayed or the fundamentally generative process can be altered at a conceptual

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

15

level. The notion of self-organization in biological systems represents completely

different pattern formation processes from those of humans. The emergence of many

macroscopic patterns found in natural systems occurs through processes and interactions

defined at the microscopic level, and distributed behaviors seen in natural systems

suggest some potential for new means to adapt to emerging complexity in building

industries.

2.1.2 Self-organization

“What is it that governs here? What is it that issues orders, foresees the future,

elaborates plans, and preserves equilibrium?” are the famous words of a poet, Maurice

Maeterlinck (1927), when he faced the apparent complexities of termites’ organized

behaviors. From the standpoints of biology and computer science, Self-organization in

Biological Systems by Camazine et al. (2002) provides profound insights about

differences between design processes in natural systems and those of humans. The

definition of self-organization in the context of pattern formation in biological systems is

the following:

Self-organization is a process in which pattern at the global level of a system emerges
solely from numerous interactions among the lower-level components of the system.
Moreover, the rules specifying interactions among the system’s components are executed
using only local information, without reference to the global pattern. (2002: 8)

In general, self-organization implies a wide range of pattern formation processes in

physical and biological systems. Examples listed in Camazine et al. (2002) include sand

grains assembling into rippled dunes, chemical reactants forming spiral patterns such as

the Belousov-Zhabotinski reaction, cells in slime mold forming highly structured tissues,

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

16

Self‐Organization

Physical /Chemical: Inanimate objects based on laws of physics

Biological Systems: living organisms behavioral and physiological

(cells, Morphogenesis, lichens, etc)

(Flocking, Schooling, Foraging)

Collective Inanimate objects
Constructions:

(bits of dirt, fecal cement, etc.)

Swarm Intelligence:
Swarm Robotics:

Sub‐units: interactions:

Sand Particles (Dune Formations)

Belousov‐Zhabotinski reaction (chemical reactions)

Morphogenesis

Pigmentation of cells

Shell Formations

Lichen Growth

Termite Nests

Wasp Nests

Beavers lodge and dam constructions

lichen growth patterns, pigmentation patterns on shells, fish, and mammals, schools of

fish, and a colony of termites building a nest. Roughly speaking, these systems can create

patterns through interactions internal to the systems; and most importantly, these pattern

formations can occur without intervention by external directing influences. Then, what is

the meaning of the term pattern? According to the authors, pattern is a particular,

organized arrangement of objects in space and time. The components or building blocks

of these patterns can be living cells or organisms themselves (living units), but they can

also be inanimate objects such as bits of dirt and fecal cement that compose the termite

mounds. In any case, the common characteristic among the above systems is the ability to

successfully build patterns with no external directing influence.

Figure 2.1 – Categories of Self-organizational Systems in Nature

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

17

Those patterns resulting from various relatively simpler local interactions can be

described as complex, but what exactly does the term complexity or complex systems refer

to in precise scientific contexts? The term “complex” is a relative term. The definition

provided by Camazine et al. designates “a system of interacting units that presents global

properties not present at the lower level” as a complex system. The terms “chaos,”

“complexity,” and “dissipative structures” have become buzzwords in articles on non-

linear systems. Self-organization in natural systems as introduced in the book can be

categorized as one branch of the complexity paradigm in its larger context.

Firstly, Camazine et al. divide self-organization phenomena into physical systems and

biological systems. The main difference between the two kinds of systems is in their

interacting subunits. The subunits for the physical systems are inanimate objects such as

grains of sand or chemical reactants. On the other hand, those of biological systems are

living organisms such as fish, ants, or neurons; hence they imply greater inherent

complexity. Another critical difference is that the patterns in physical systems are

induced by interactions based solely on physical laws, whereas those of biological

systems can be influenced by physiological and behavioral interactions among the living

components. Biological subunits can gain information about the local states of the system

and behave according to the genetic programs that motivate the natural selections

according to the genetic programs that motivate them. The authors also note that recent

findings in studies of self-organization indicate that interactions among system

components can be surprisingly simple compared to the highly sophisticated outcomes

(patterns) which they can achieve through these interactions.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

18

The self-organizing system – often seen in social insect behaviors – is a decentralized

problem-solving system that consists of relatively simple interacting entities. In a

decentralized system, each individual gathers information on its own and decides for

itself what to do based on its local properties, and this activity is carried out in dynamic

fashion. Unlike the convergence toward static preconceived goals in some human

activities, continual dynamic interactions among simpler lower-level entities produce and

maintain the goals. In these systems, the goal itself is an ever-changing property and

requires continual interactions. These characteristics make their problem-solving

approaches very ‘flexible’ and ‘robust.’ Flexibility in self-organized systems means being

adaptable to constantly changing environments. Robustness is their ability to function as

a whole regardless of some imperfection in performances at the local lower level of

components, which means that failures to perform tasks by some individuals in the

system are not always fatal to the entire system’s ability to function. Even though

individual entities do not possess sophisticated cognitive capabilities, aggregation of

these entities interacting in dynamic fashion based on simple locally distributed rules is

able to maintain and direct the system toward the globally optimal solutions. Of course,

human systems also possess this type of tolerance for unpredictable conditions to some

degree. However, it is likely that the tendency to seek perfection and to gain immediate

efficiency based on thorough before-the-fact calculation is more significant in human

systems than in biological systems, and there may well be some valuable knowledge to

be gained from investigating and adapting those systems’ behaviors. The consequential

resulting products of those systems’ collective behaviors are often thought to possess

emergent properties.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

19

Emergence refers to “a process by which a system of interacting subunits acquires

qualitatively new properties that cannot be understood as the simple addition of their

individual contributions,” according to Camazine et al. (2002). One dramatic example

that displays the intuitive sense of emergence is the phenomenon of Bénard convection

cells. Above a certain threshold temperature, initially homogeneously layered cells in

laboratory trays suddenly organize into an array of hexagonal cell arrangements, and this

change is not a gradual one. A new pattern emerges to form a stable configuration when

the amount of heat accumulated inside the cells reaches a certain point. This type of

behavior is seen in many non-linear systems, and the emergence of such a pattern or

property is called an attractor. Much research on self-organization is directed to the use

of non-linear systems as models for describing natural systems.

2.1.3 Synthetic versus Natural systems: Pattern formation by humans

In contrast to the aforementioned natural systems, systems that traditionally are executed

by human intelligence show entirely different motives and behaviors, and Camazine et al.

(2002) display keen observations about the differences between the two systems. The

authors point out that there are four ways in which a group of intelligent beings can build

an ordered structure without self-organization. The mechanisms which exemplify pattern

formation by human groups are leader, blueprint, recipe, and template. These four means

are externally imposed on the group’s activities in orderly fashion without the

interactions of the system’s components seen in self-organization. The existence of a

well-informed leader is quite a common characteristic in human group activities, as

majorities of our corporations in societies possess top-down hierarchical organizational

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

20

structures. Many constructive processes essential to our activities are more or less

multiple combinations of the above listed mechanisms, such as a leader and a blueprint.

A recipe provides the step-by-step instructions for the pattern, while a blueprint provides

only what is to be built. A recipe can be used with behavioral adjustments based on the

feedback from the emerging pattern, and some of the human activities represent this

capacity to flexibly adopt changes to some degree in combination with relatively more

centralized strategies. An example of a recipe can be literally a chef tasting and adjusting

the seasoning of his dishes as he cooks. A template is a full-scale guide or mold that

specifies the final pattern, and the authors list cookie cutters and candle molds as typical

examples.

Camazine et al. (2002) also speculate about why many animal species do not rely on

blueprints. For example, mental blueprints for complex structures, such as termites’ nests,

consists of a vast quantity of information, and genetically encoding the information and

storing holistic pictures inside each of an individual’s genes is extremely “expensive”.

Reliance on blueprints for animals entails each group member to be able to interpret and

extract the building operations out from them, and this is beyond many animal groups’

individual mental capacities. This proneness to more distributed task management among

animals becomes clearer when the aiming pattern gets larger and more complex. For

instance, the pattern formation process requiring sequential stages of operations is very

difficult for animals to conceive solely from the blueprints. Perhaps the highly evolved

human cerebral cortex allows us to develop dynamic interpretations by high level of

mental sophistication, and each individual can figure out instructions from the blueprints.

All the above facts are provided from disciplines outside of architecture or design. It is a

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

21

little surprising to find that such philosophical observations about essential human

construction activities are rarely discussed among designers currently.

2.1.4 Collective Construction

Figures 2.2 – Collective Constructions by Social Insects (Termites and Wasps)
(From http://en.wikipedia.org/wiki/Image:Termite_Cathedral_DSC03570.jpg)

In contrast to construction processes by humans, the Collective Constructions seen in

nature, accomplished by wasps or termites, indicate the existence of fundamentally

different construction principles based on completely different logics and behaviors.

Firstly, wasps or termites do not have awareness of the global goal of their constructions.

Unlike human constructions, no predetermined blueprints are available throughout the

constructions, and it is doubtful that there is ever any awareness of the final configuration

or convergence in their minds during the construction. Their process does not depend on

supervisors or central leaders monitoring their progress and giving instructions. The

critical difference from the conventional centralized human design method is that the

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

22

self-organized internal logic inside the system is able to search and design without

knowing its transcendent global target in a bottom-up manner, rather than casting and

limiting the final form or gesture in a top-down manner before fulfilling all the

requirements.

These processes are completely different from many existing conventional design

processes which we have seen in human architecture so far. Our design process does not

flexibly change its goals during its process, and oftentimes blueprints or global gestures

are known in advance or imposed by leaders at the beginning of their design stages.

Although we have a collaborative process among architects, engineers, and various

consultants, a goal and fundamental objectives for design rarely exhibit dynamic changes

during the course of design. The existence of a well-informed leader is a quite common

characteristic in human group activities, and a majority of our corporations in society

possess top-down hierarchical organizational structures. In contrast, design processes in

wasp and termite colonies are self-organizing processes, and their final formal

configurations are the results of optimization by locally distributed multiple intelligences.

One well-known example of these self-organized, distributed behaviors is the beaver’s

ability to build lodges and dams from branches, mud, and other debris. According to

Camazine et al. (2002), beavers do not seem to rely on any innate concept or blueprint of

the structures they build. Instead, the authors speculate that their building behaviors are

genetically programmed responsive acts which are triggered by the beavers’ surroundings.

This kind of stimulus-response is often called Stigmagy (Grasse, 1959) by researchers.

Stigmagy is an important notion for understanding the process of collective constructions.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

23

In this notion, information from the local environment under dynamic progressions

stimulates and guides further activities in construction. A certain local state of the system

becomes an incentive for the next construction for individual workers, and this process

continues to feed new information to the builders. In this way, information is always

provided from the dynamically changing environment rather than any source of

information external to the ongoing construction activities. This is one of the reasons why

social insects, such as termites, can undertake complex constructions without knowledge

of the ultimate form of the structures. Thus Stigmagy often refers to the information

collected from works in progress. Consequently, the resulting products of these collective

activities are often thought to possess emergent properties.

Computational Interpretations

Theraulaz and Bonabeau are two of the pioneers who have provided the computational

interpretations for the logics behind the collective constructions by wasps (Theraulaz and

Bonabeau, 1995a, 1995b). Their generative methods are based on three-dimensional

cellular automata with locally defined rules, and agents move randomly inside the lattice

to drop the building blocks based on the cellular neighborhood rules. This interpretation

of wasp behaviors is based on the notion of precedent Stigmagy (Grasse, 1959). In this

purely conceptual experimentation, the ultimate objective is to gain cohesive structure

solely from locally assigned series of construction rules without providing any global

information about the structure (such as blueprints). The wasps in their model do not

have any global sense of what they are constructing; instead, they have their local sensing

as a stimulus to continue their constructions.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

24

Figures 2.3 – From “Modeling the Collective Building of Complex Architectures in Social
Insects with Lattice Swarms” by Guy Theraulaz and Eric Bonabeau (1995a).

The experiment takes place in the hypothetical lattice space inside a digital environment,

and numbers of construction agents are distributed inside the lattice space. Series of rules

(instructions) indicating the proper placements of construction blocks, based on the 3 x 3

x 3 neighborhood conditions, are originally randomly generated and given to the agents,

and they place the building blocks as they find the stimulating configurations which

match the given rules. With this method, they can continue to construct the structure

based solely on the feedbacks from local dynamic neighborhood conditions in concurrent

fashion. By iterating this process for a certain period of time, agents will produce

structures corresponding to the given rules. By sequentially applying different sets of

rules step by step, they successfully direct their agents (wasps) to construct even more

complex structures which resemble the actual nests constructed by Epipona wasps.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

25

Here, the experiment is taking advantage of spatiality and the emergent property of

cellular automata, and the stochastic nature of Monte Carlo methods. The randomly

walking agents are used to add some noise and variations for the resulting architecture.

Perturbations in results also depend on the types of rules wasps apply. Based on the rules

and the combinations, their resulting structures can be either deterministic or non-

deterministic and occasionally have some probabilistic variations in their growths, since

the movements of agents are not defined deterministically. Some sets of rules are

deterministically applied regardless of the agents’ random movements, and they always

create the identical resulting configurations; while some sets of rules allow several

different resulting configurations based on which areas in the lattice are stimulated earlier

during the process. Potentially, design tendencies or the likeliness of certain patterns are

describable with a few rules instead of requiring complete resulting forms. Use of a

relatively abstract form of design description, ‘Rules,’ is suggested in this method.

Auto-generation of building structures

The next step for the experiment is to auto-generate and select the fittest set of rules by

providing evaluation criteria for arbitrarily produced populations of building structures.

Experiments by Theraulaz and Bonabeau’s more recent paper (Bonabeau, 2000), and also

the present author’s personal design exploration, represent some efforts to

computationally carry out the abovementioned step.

From the author’s experiment, construction by computational agents using every set of

rules is performed until the structures cease to grow or the numbers of iterations exceed a

certain threshold. Populations of sets of rules are compared and evaluated according to

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

26

the resulting structures. Then, based on evaluation, rule-sets that score higher fitness

values will be considered as elite sets and remain as parent sets for the next generation’s

schemes. For every rule in every set, the numbers of times that they are stimulated is

recorded, and the rules that are used more often are ranked higher among the rule-sets.

The rules that are never stimulated during the simulation will be discarded from the rule-

set (extinction). New generations of rule sets are produced by simple cross-over between

aforementioned parent sets, and a mutation process adds a randomly generated new

matrix of rules to prevent the search from stagnating within local search spaces. The

above iterative process is based on the genetic algorithm (GA) developed by John

Holland (1992). For the sake of clarity, the fitness criterion that was chosen for the

experiment was based on simple local checkability. The aim is to direct the evolution

toward the formation of larger clustering patterns. For every block in the resulting

structures, the numbers of identical matches of local neighborhood cellular configurations

are checked, and the matches in the neighborhoods with the larger radii (up to 5 units) are

considered to have higher fitness, as it implies similarities on a larger cluster scale.

From the author’s personal experiment, the results indicate the appearance of some

coherent structures in an earlier generation (Figures 2.4, 2.5, & 2.6). We recognized self-

similarities in some structures which resemble the Sierpinski triangle. Once the numbers

of blocks exceed certain numbers, growth seems to converge on simple filling of the

lattice or alternating grids. Dividing the above fitness results by the number of cells

generated is one strategy to penalize excessive growth, and to avoid high-density

solutions. Using hard-coded rules that guarantee the generation of coherent structures as

the GA’s initial population, instead of randomly generated rules, is another strategy.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

27

However, initial rules are gradually replaced by cross-over and mutation after a few

generations and eliminate the initial population’s influence on geometries. Due to the

purely computational nature of the experiment, selection of proper fitness criteria has

become a profoundly complex issue beyond its architectural interpretations. What

appears to be coherent in numerical format does not always give us visually recognizable

patterns. This discrepancy between our intuitive visual perception and our numerical

implementations requires further study and will be an interesting challenge for future

explorations. This fitness criterion can, theoretically, be designed carefully to implement

complex conditions to assimilate real-life scenarios in architecture.

Figure 2.4 – Sets of local rules to grow structures (top left). Procedural Representation of design
and its evolutions (top right). Examples of Structures evolved autonomously in evolutionary run.
Configurations are based on the fitness evaluation (Bottom). (Figures produced by the author.)
(Narahara, 2008)

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

28

Figure 2.5 – Generative Grammar Sets developed based on the Constraints of the robot’s (RB-
140 by ABB co. ltd.) gripper movements and the Stackabilities of the blocks. Experiment was
inspired by the experiments from previous page (Top). (Figures produced by the author.)
(Narahara, 2008)

Figure 2.6 – Possible generative construction iterations using unit blocks based on the
hypothetical fabrication constraints of the robot (Bottom). (Narahara, 2008)

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

29

2.1.5 Applications of Self-organization: Computation Methods related to Emergence

In the area of computer science, a large number of scientists have started to pay attention

to self-organizing systems, particularly to those seen in the social insect behaviors, and

they try to take advantage of these systems when solving our problems. This approach

focuses on the characteristics of self-organization, such as distributedness, flexibility,

robustness, and interactions among relatively simple agents. A number of applications

have been in the areas of combinatorial optimization, communications networks, and

robotics, all inspired by self-organization. The social insect metaphor can be well linked

with the formulation of artificial intelligence and swarm intelligence. According to

Bonabeau et al. (1999), swarm intelligence refers to the emergent collective intelligence

of groups of simple agents. Bonabeau stated that this application is important because it

will offer alternative ways to design intelligent systems driven by emergence and

distributed functioning to replace conventional centralized control and programming.

This trend and the interests in self-organizing systems among computer scientists

motivate them to model and simulate social insects’ behaviors. Eventually, their goal is to

design artificial distributed problem-solving devices that self-organize to solve problems

based on hints and inspirations from the social insect behaviors. The current popularity of

object-oriented structures among computer programs, or the rapid growth of web-based

information systems, such as Wikipedia, can be an indication of our growing interest in

distributed ways of thinking across disciplines and beyond specific academic

communities.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

30

One of the first approaches to mathematically and computationally understand emergent

behaviors was accomplished by Turing in the 1950s. He wrote the seminal paper in the

area between biology and computer science, called “The chemical basis for

morphogenesis” (Turing, 1952). In this paper, Turing was trying to provide a

mathematical interpretation of morphogenesis. The model that Turing proposed was one

of the first to model an emergent pattern formation from interactions and diffusions

among more than one (multiple) chemicals, and this notion is considered to be one of the

earliest examples of biological models described as complex systems. He designed the

systems with two chemicals – activator and inhibitor – in a correlating relationship, and

the faster diffusion rate of the inhibitor induces the formation of patterns which are often

called Turing patterns. It is known that a variety of patterns can be generated by changing

parameters in the Turing equation, and this logic of pattern formation gave a basis to

explain patterns in nature, such as pigmentation patterns on shells, fish, and mammals.

This direction established by Turing and some other scientists has been further developed

by many researchers such as Prigogine. They performed studies of dissipative structures

under the influence of non-linear interactions (Prigogine and Stengers, 1984).

The Turing’s mathematical interpretation of morphogenesis was based on differential

equations and meant to provide analytical interpretation of the phenomenon. However,

there are several different up-and-coming techniques and methods for formulating models

of emergent systems to simulate various collective activities. For example, Camazine et

al. (2002) listed three common approaches: differential equations, Monte Carlo

simulation, and a cellular automaton (CA). The same collective activities can be modeled

by different methods, though they each have their own pros and cons. The differential

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

31

equation models are more explicitly described with mathematical formulas (such as

Turing’s equations) and represent each entity’s (individual’s) behaviors over time by

precise quantitative and rather deterministic descriptions. Many scientists prefer the

analytical clarity inherent in mathematical expressions.

On the other hand, a Monte Carlo simulation can treat an individual’s behavior

probabilistically, and there is more room to implement perturbations or noise among the

interacting entities. This can be an advantage when systems display more whimsical

behaviors, such as insect moves. This method often requires extensive calculations to

execute a large number of iterations to gain viable results due to the probabilistic nature

of the simulation. Unlike differential equation models which can deterministically derive

results, the Monte Carlo simulation of ant foraging needs many trials to determine the

equilibrium distribution of the ants. Camazine et al. (2002) indicate that the average

results of all runs from the Monte Carlo simulation for their ant foraging model

eventually converge on the results from that of differential equations as they increase the

number of iterations.

A cellular automaton (CA) can describe ‘spatial relationships’ by arranging subunits over

a discrete grid or lattice. Interactions between the subunits are described by simple

cellular neighborhood rules, and based on these rules various subunits will change their

states over discrete steps of time. The above two methods are fundamentally different

from the models using differential equations which describe continuous process

mathematically and provide analytically convincing results.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

32

Many models of emergent systems are not always analytically solvable or describable,

and it is occasionally necessary to rely on numerical calculations or optimization

techniques by computers. This is where techniques such as Monte Carlo and CA become

potentially valid and useful. Due to a recent dramatic increase in desktop computational

power and speed, Monte Carlo and CA simulations have become more promising

techniques for researchers, as both require computing a large number of iterations to

determine the results.

These two contrasting and distinctively different attitudes towards problem solving exist

in the understanding of many phenomena in our daily life. In almost any field of studies,

not only engineering but also social science, economics, and architecture, this duality of

problem-solving attitudes exists. The analytical approach is much more deterministic in

terms of its methods and results, whereas approaches that rely on computational iterations

using stochastic simulations, such as the Monte Carlo methods, are the “trial and error”

type approach of a heuristic process that relies on random samplings. Analytical and

deterministic problem-solving methods are not always available for all the problems.

When one cannot formulate explicit equations for problem-solving methods, the latter

approach based on heuristic processes can be a good alternative approach.

The best known example indicating this duality of problem-solving approaches is

Buffon’s needle experiment in 1777, an example often used to introduce the Monte Carlo

methods. Basically, the probability of a needle to fall between the two color stripes of a

surface (or onto one color) can be derived quite deterministically by using geometrical

probabilities. In this way, without committing any trials, one can analytically derive the

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

33

regulating threshold value. However, another approach to solve the same problem is to

simply throw as many as needles as possible and gain the results empirically, based on

this stochastic approach. Similarly, queuing models for various situations such as

ticketing counters at airports can be modeled both analytically, using Poisson’s

distribution for the arrival rate of the incoming people, and stochastically, using Monte

Carlo simulations. The results from Monte Carlo simulations are known to converge

toward the results from the analysis. Moreover, Monte Carlo simulations are used when

no kind of deterministic algorithms is feasible, or is incapable of modeling phenomena

with many uncertainties in inputs. Obviously, the aforementioned duality does not exist

in all problems – especially for the modeling of emergent phenomena.

A genetic algorithm (GA) is a heuristic optimization technique that uses randomness and

is a computational methodology related to the concept of emergence. A GA is

categorized as an evolutionally computational method, and possesses the interesting

characteristic that globally functional solutions can be evolved by resolving local

neighboring conditions in a repetitive manner. Similar to the Monte Carlo methods that

use the random samplings, a GA uses stochastic selection in order to form a new

population. (Detailed description of a process using a GA will be provided in the next

chapter.) Besides being reliable search optimization strategies for problems such as the

Traveling Salesman’s Problem (TSP), a genetic algorithm has been used for generative

purposes, for example, for artificially evolving physical electrical circuits, for finding

better configurations for antenna designs, and so on. The critical difference from

conventional deterministic and analytical problem-solving methods is that a GA does not

require instructions about how to find the solutions. By applying random genetic

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

34

operators, it can perform variation and selection, and it is possible to determine unknown

solutions to complex problems to some extent. This is a common characteristic among

evolutionary algorithms which rely on the amplification of fluctuations (randomness),

and this characteristic enables the discovery of new solutions. In addition, a GA does not

make any assumption about its solution space (fitness landscape) at the outset of its

search process, and this generality of a GA allows it to be used in diverse fields beyond

science and engineering. In architecture, typically solutions for multiple requirements

from programs are unknown, and there are no deterministic search methods. Therefore,

proper applications of a GA are a potentially a good approach for approximating

solutions for many architectural problems.

This unique characteristic has been utilized by researchers not only for the purpose of

problem solving but also for searches toward the unknown or undefined goals. Some of

the computational experimentation by leading scholars using GA and GP (genetic

programming) represents attempts to synthetically assimilate the evolution of artificial

life forms within a computer environment. For example, H. Lipson (2005) used a genetic

algorithm to evolve configurations for robots with basic building blocks such as bars,

actuators, and artificial neurons, to find the fittest machines based on the locomotive

abilities of the robots inside the virtual environment. Another current trend using

evolutionary computation techniques is a design of adaptable systems that can

dynamically reprogram themselves to tolerate various unpredictable changes of

environments. These highly speculative experiments are beyond the domain of simple

simulations of existing physical phenomena, and display an ambitious approach to evolve

and foresee the solutions beyond discernible domains of our search spaces.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

35

 e f g

Figures 2.7a-g – Diagrams from “Automatic Design and Manufacture of Artificial Lifeforms”
(Lipson, 2005).

2.2 Artificial Systems

2.2.1 Reframing Human Design Activities

This thesis is about the investigation (and the exploration) of fundamental components in

architecture: physical or non-physical components that form and organize spatial order in

response to emerging sociological needs and technological innovations.

The search for indivisible components that make up the entirety of the universe of matter

has been a perennial agenda for human civilization. Even in the pre-Socratic era, the

concept of ‘atom’ existed. Leucippus and Democritus were the first ones to propound the

theory of Atomism, that all of reality is made of indivisible building blocks. Among

contemporary physicists, the question, “Is matter infinitely divisible?” is still an unsolved

mystery. This question can be paradoxical, since the absence of observation of such an

element could never prove its absence; thus we may never understand the truth.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

36

The concept of finite composing units originated by early philosophers such as

Democritus has some importance for human design activities. Almost all man-made

products can be seen as a composition of discrete finite elements. The agglomeration of

primitive components constitutes a unique composition, and how we organize

components will make differences in resulting compositions. A brick in masonry

construction is a good trivial example of a basic building unit in architecture. The search

for appropriate basic building blocks could help our understanding of creative processes

in architecture.

However, in the context of architecture, the search for the indestructible building block,

‘atom,’ might not have direct importance for designers’ production processes. Nobody

starts designing a city by selecting hardware for doors. Instead, we usually find better

ways to represent each individual building as a block or mass. Selection of these finite

units is all relative to what we design, and we usually unconsciously encapsulate large

amount of information (data) into a ‘type’ or ‘object’ in order to handle these objects as if

they are single components. Abstraction of components helps us to focus on designing

relationships among various units. This concept of encapsulation or modularization is

fundamental for many existing design assistance tools from ancient architectural drawing

techniques to contemporary CAD systems.

One example of this can be seen in recent Building Information Modeling (BIM) tools

such as Revit (AutoDesk, 2010) which has extensive predefined libraries of frequently

used architectural components such as walls, windows, and doors. These components are

parameterized, and they can resize and add necessary details in a semi-automated manner

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

37

to raise architects’ productivity. In addition, some manufacturers provide downloadable

components of their products from their website. Architects can focus primarily on

designing the relationship among these abstract components rather than spending time

detailing every single component. This so-called “object orientation” has been an

important concept of recent design culture.

In construction technology, the development of components such as modular walls and

partitions is a good example of discrete elements intended to economize on our

installation, assembly, and overall production processes. This notion of the ‘unit’ is the

basis for modular systems and prefabricated constructions, and units even became a

creative driver for development of architectural styles such as Metabolism, proposing

replaceable modular building capsules.

This phenomenon of encapsulation is observed in many contemporary practices across

disciplines. Object-Oriented-Design is one such strategy that has been famously applied

to modern programming languages. It is a well-organized platform to build a complex

network of data structures. This is especially true if multiple individuals are involved in

production processes. One reason for this is its ability to encapsulate a large amount of

data into a single ‘object.’ Once objects are defined, they can be instantiated without

requiring users to know every detail of their internal descriptions. Users can define each

object and interactions among them, and they can build relationships among objects

without going into meticulous details of each object.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

38

In architecture, this type of language setting can potentially produce more flexibility and

interactivity among designers and users throughout the design process. The appropriate

definition of basic building blocks can help architects to develop their designs more

efficiently, and this concept of ‘encapsulation’ can be applied to general planning of

architecture as well as to the physical design of construction components. This concept of

object-orientation can potentially enhance extensibility of systems in architecture.

“A part and a whole” is an important point of view for designers, especially for architects

who are in need of understanding relationships among various contextual elements at far

larger scales than product designers. One’s perception of a whole can be a part of a larger

whole, and the organizational principles behind a complex web of relationships among

buildings are not always obvious. Better understanding of dynamical relationships of

‘global to local’ and ‘local to global’ has been gaining unprecedented importance among

us today.

Our processes of building design have a tendency to proceed from macroscopic (global)

views to microscopic (local) views. Normally, we organize overall relationships among

different buildings on site and fulfill various required programmatic elements inside the

buildings in schematic design phase. Then in design development and construction

document phases, we gradually resolve more detailed issues. On the other hand, many

systems directed by self-organization, which we have reviewed in recent sections, have a

tendency to acquire global patterns from the interactions among the system’s constituent

units based on purely local information. Empirically, we already have basic

organizational typologies for conventional building types, and even some unconventional

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

39

building types can be resolved by hybridizations of knowledge we already have.

However, increasing complexities and quantities of building programs from newly

emerging usages and social demands and new technologies that allow unprecedented

spatial organizations have started to demand that architects find new hierarchies and

organizational principles which cannot be conceived simply by manipulating knowledge

from traditional building typologies. An approach based on ‘local to global’ thinking is

an alternative strategy to find unknown organizational solutions.

One of the primary interests of this thesis, ‘adaptabilities in architecture,’ can be achieved

by clever use of organizational schemes in order to improve our dynamics of building

activities. Participatory designs led by some architects, such as Lucian Kroll and

Christopher Alexander, showed examples of such design strategies by providing multi-

participatory platforms for designers and clients. Their processes were based on manual

and analogue procedures without using computers; however, their concepts, such as

Alexander’s pattern language, left some influence on later conceptual developments of

object-oriented programming languages. Whether their results are successful or not, their

design processes based on group dynamics and multiple user interactions led them to

acquire a different design methodology and outcomes from mainstream modernists’

architectural approaches at the time. I will explain more details about their practices in a

later section. Their approach is in contrast with the approach of the Metabolists, who had

tried to achieve similar objectives by physically replaceable/reconfigurable systems. I

argue that the development of physically reconfigurable components can potentially

contribute to and reinforce design strategies based on group dynamics by allowing

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

40

building components to concurrently adapt to newly emerging needs even after the

completion of the building structures.

One provocative example which enabled itself to acquire a living organism-like

adaptability was Kowloon Walled City in Hong Kong. Kowloon Walled City displayed

incredible flexibility and capacities to transform itself, within a relatively short period of

forty years, from a place with a few thousand inhabitants to a structure in which more

than 35,000 inhabitants resided. This is one of the closest approximations to a man-made

structure that uses self-organization principles such as those found in natural systems. In

fact, we are only at the beginning of the process of finding technological and ideological

improvements to synthetically achieve such a system. None of the examples by

professionals, including Metabolists and practitioners of participatory design, who had

envisioned notions of architecture as a reproductive system, have ever reached the

emergent quality of Kowloon. In this case, the resulting structures were not necessarily

the best examples of architecture for human living, but the structures’ ability to

reconfigure themselves to accommodate radically increasing their population within a

relatively short time was extremely unusual. Incredible plasticity displayed by the

structures might have been contributed to by use of relatively low-quality construction

methods and materials. Impreciseness and rawness of composing elemental units

probably also allowed local residents to have design and construction occur

spontaneously in a relatively short time and enabled their structures to gain a fluid-like,

smooth transition between one state of the structure to another, to some extent. (More

detailed explanations will be in a later section in this chapter.) However, to think of low

quality and lack of sophistication as necessary conditions to materialize emergent self-

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

41

organizing structure may be misleading. Kowloon Walled City had many practical

problems concerning lighting and circulation. But one primary interest of this thesis is

whether an active adaptation of a computational approach can potentially improve and

enhance the emergent characteristics found in Kowloon Walled City to a practical level

of application.

Recent advances in technology have been offering a good opportunity for us to

reexamine what appropriate basic building units can be in both design and construction

processes in architecture. Reconfigurable modular systems proposed by various computer

scientists, such as Lipson and Murata, show the potential for building units to be actively

responsive components rather than inert static objects (Lipson et al., 2005; Murata, 2006).

They also use decentralized controls based on local communication between modular

units, and this characteristic is providing robust and flexible organizational strategies and

design processes for global configurations. My hypothesis is that eventually sufficient

computational power, material and structural innovations, and advances in

communication devices will lead us to conceive extreme forms of adaptability in either

synthetic or organic matter. With that in mind, what we can optimally gain in order to

take full advantage of decentralized notions within the reach of current technology has

become an agenda for the thesis.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

42

2.2.2 Physical Implementations: Mid-to-large building scale applications

Human efforts to practice Self-organizing Design

In architecture, there have been efforts to create systems that can tolerate programmatic

and environmental changes over time. Some responded to these issues by proposing

physical systems that can alter their morphological states in order to adapt. In addition to

practices in architecture, there are speculative experiments by computer scientists and

engineers inspired by self-organizing adaptable growth models seen in natural systems. In

the following section, I would like to review those endeavors.

2.2.3 The Metabolist movement during the 1960s in Japan

One of a few examples of architecture representing the principles of emergence, self-

organization, growth, and adaptation is the Japanese Metabolists movement in the 1960s,

led by rising architects of the time such as Kisho Kurokawa and Kikutake Kiyonori.

(Yatsuka, 1997) In the late 1950s, Japan started to experience the pressures of

overcrowding in urban areas, and in response to this social issue, the Metabolists

proposed plug-in megastructures that could constantly grow and adapt by clipping

prefabricated pods onto infrastructural cores of skyscrapers as if they were living cells.

To date, very few Metabolist concepts have been realized, yet some buildings – including

Kurokawa’s Nakagin bachelor capsule tower, built in Ginza, Tokyo, in 1971 – have

revealed their unique visions, as well as limitations, quite clearly (Figure 2.8). Original

visions of metabolic growth and adaptation were rarely realized physically, as the size

and weights of the pods were practically very difficult to reconfigure.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

43

Figures 2.8 – Nakagin capsule tower by Kurokawa, Tokyo, 1971 (Left). (Yatsuka, 1997).
The cluster in the air by Isozaki, 1962 (Right). One of the seminal works by the Metabolists.

Scale and size of subunits

One of the fundamental problems that the Metabolists had faced during the 1960s was the

mobility of the primary composing elements (units or capsules). These subunits are

normally attached to an infrastructural core (tower), and their joints to the core

(connection) allow them to have several different options for their orientations. However,

these systems do not promise greater numbers of configuration patterns for global

structural forms, as the unit’s joint has only a few options: to be either detached, joined,

or joined with a different orientation. The Nakagin Tower by Kurokawa was a good

example of this characteristic. Subunits in Metabolists’ buildings are large and static so

that use of heavy industrial cranes is required to move and reconfigure the units.

Eventually all the systems of the units, such as data connections, plumbing systems, and

heating and cooling systems, have become obsolete, and these buildings were never used

in the way that they had initially been intended to be. Eventually, some Metabolist

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

44

buildings were demolished like any other conventional buildings in spite of their original

concept of metabolic growth. Development of flexible and adaptable architecture has

been a perennial theme among practitioners, and some of the failures among the

Metabolists in the 1960s clearly indicate the difficulties of designing universal subunits

that can endlessly tolerate the technological, environmental, and circumstantial changes

associated with structures.

2.2.4 Isozaki’s Concept of Process Planning

Arata Isozaki was not officially a Metabolist member (Yatsuka, 1997). However, he

offered an interesting manifesto about time-based architectural design methodologies in

“Process planning” (Isozaki, 1967, 1972). In it, he listed two categories of architectural

design planning methods: closed planning and open planning. Closed planning is a

relatively traditional planning style that anticipates a complete final product of design

from the outset of a production process. In this case, the end of the production phase is

the completion of the product, and it has no plan for further extension. The production is

based on a precisely planned blueprint which includes all possible requirements up to a

certain future stage of time. In contrast, open planning aims at designing a system that

can be upgraded for various future extensions from the beginning of the planning.

According to Isozaki, this is a characteristic seen in many modular systems in

architecture. In this planning approach, most of the efforts are spent on the design of

generic or basic components that can accommodate as many conditions as possible. As a

consequence, composed spaces become homogenized and lack dynamic extensions.

Isozaki speculated that in the near future architectural planning would require placing

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

45

more priority on time-based dynamic adaptation for ever-changing environments, and he

named this third category as “process-planning.” Many buildings by Metabolists fall into

an open planning category. The Oita prefectural library project (1966) by Isozaki, which

was claimed to be designed by a process planning concept according to Isozaki (1967), is

composed of a systematic tubular structure with well integrated mechanical systems. This

appeared to be quite similar to the conventional modular system both in architectural

style and scale, and it is similar to those of Metabolists. Perhaps, the true realization of

the process-planning method has not been realized yet, even for Isozaki.

Closed and open planning is also a common concept in software engineering.

Encapsulation of certain code sequences allows us to use them as a library, and

guarantees certain levels of extensibility for software development. As I mentioned in an

earlier section, object orientation is a good strategy for building open planning

frameworks for systems. Modern concepts of software engineering are shifting towards

open planning, and more away from closed planning, as they are encountering constant

needs for revisions and updates of their contents and functionalities.

2.2.5 Construction Automation during the 1980s in Japan

Applications of robotics technologies to architecture are relatively new attempts among a

few people in this field. Due to their high initial investment cost and the nature of their

experimental characteristics, robotics applications in architecture have been considerably

influenced by the economy of the time. One of the notable practitioners of robotics

technologies in architecture is Santiago Calatrava, and some of his works have kinetic

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

46

components that are actuated by robotic control systems. While types of works

represented by Calatrava shows applications in building operations and even aesthetical

effects associated with the kinematic components, applications found among Japanese

general construction companies in the 1980s have focused on efficiency and economy of

construction sequences through robotics technologies. Many research studies in this area

have been focusing on developing construction automation systems which can achieve

efficiency in production processes to compensate for the predicted future decrease of

manpower in the construction industry. During the 1990s in Japan, with the help of an

economic boom now, in hindsight, called “the bubble,” major Japanese general

construction companies competed to develop ambitious large-scale construction

automation projects such as ‘Big Canopy’ by Obayashi Corporation (Shiokawa et al.,

2000) and ‘Smart Systems’ by Shimizu Corporation.

Those systems are for the construction of a complete building using automated

construction and robotic construction technologies. Obayashi Corporation’s Automated

Building Construction System (ABCS) in 1993 was one of the earliest working systems

in the industry. In the ABCS system, a temporary housing that contains all the production

equipments, including robotic cranes and welding robots, is attached at the top of a

building under construction, and the entire system is lifted up as they finish constructing

the lower floors. The system aimed at reducing construction time and labor needs, and

improving quality and safety. T. Shiokawa (2004) indicated that ABCS achieved about a

60% man-hour rate reduction compared to that of construction of a building with the

same scale executed by conventional construction methods and schedules. (The man-hour

rate is the number of workers times working hours per day divided by square meters of

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

47

gross building area. The man-hour rate shrank from 7.8 to 3.2 through switching from

conventional methods to ABCS (Figure 2.9).

Although these ambitious projects in the 1990s faded away due to the economic upheaval

in Japan at the time – ‘the bubble crisis’ – the essential notions of automated repair and

fabrication can still be viable concepts for the future of architectural design.

Figure 2.9 – ‘Big Canopy’ by Obayashi Corporation (Shiokawa et al., 2000).

One critical limitation in the construction imposed by the systems was their inability to

adapt to various differentiations of site conditions and programmatic customized

variations in their productions. They can manufacture identical structures in an extremely

efficient manner; however, the flexibility of the systems was not ready to be used at the

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

48

practical level for all kinds of project types. Some companies employ hybrid applications,

with a conventional erection method for the portions of buildings to sustain the developed

technologies and investments they have committed. Overall conceptions were extremely

ambitious and promising, though the concept of construction automation might have

needed another level of conceptual refinement or theoretical leap for the systems.

Assembler-Assemblee Relationship

Whether a system has a clear separation between what is going to be built and what is

building it is one criterion that can classify the system’s characteristics. This separation

between assembler and assemblee consequently leads the system to have discrete,

separate phases of design and construction. If any system’s composing units have an

ability to construct themselves, the system can more spontaneously reconstruct itself

without having any clear termination points for each phase. The construction automation

systems still show a clear separation between assembler and assemblee, although their

systems are fairly automated. As long as this separation exists, no matter how automated

the systems are, buildings will not be able to actively and dynamically reconstruct

themselves. Design and construction are two discrete, separate phases in the construction

automation systems, and they still fall into the aforementioned closed-planning category.

Realization of time-based growth models in architecture might require seamless

integration between those two roles – assembler and assemblee.

The distinctions between buildings and their fabrication systems may fade away in the

future, and the system of production can manifest itself as an inseparable component of

architecture in order for structures to adapt and grow over time. This ultimate integration

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

49

of production systems and architectural spaces will realize a true sense of ‘architectural

automation’ which includes automation of not only construction but also design. This

generative fabrication machine is simultaneously a machine for living that can also

spontaneously think, design, and build. We have yet to see the realization of such systems

in architecture, and the physical appearances of such systems may be entirely different

from our conventional understanding of architectural forms. The realization of the system

will introduce a different kind of formal appearance for future structures.

Recent advances in technologies allow us to reconsider the notion of fundamental

composing building units, from being inert objects to being active responsive units. This

will alter the building units into active intelligent components that can respond and

reconfigure to fit unpredictable future scenarios. In the next section, I would like to

review more specific potential applications to embody these hypotheses.

2.2.6 Swarm Intelligence: Self-reconfigurable Robots

Precedents from a more speculative area are the modular systems proposed by computer

scientists such as Murata (2006). Such modular systems can self-reconfigure themselves

to produce structures such as dams, caissons, bridges, and space structures. Metabolist

architecture can also be categorized as a modular system; the critical difference between

Metabolist architecture and self-reconfigurable systems is that the modular units in

reconfigurable systems have abilities to sense and evaluate the local conditions and

autonomously take proper actions. In this way, the systems have an ability to function

and recover even with some failures at several local conditions, while centrally controlled

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

50

systems fail entirely once the main controlling units stop working. This embedding of a

local feedback system within each individual subunit enables robust control of adaptable

structures. In this regard, recent implementations by computer scientists are more

advanced interpretations of biological metabolic systems by being an aggregation of

automatons as a reduced form of living cells. This adaptation of another level of

intelligence within the individual units of the structure starts finding practical

applications in construction in hazardous areas or construction of unmanned planetary

structures where we cannot depend on any assumptions of a pre-determined environment.

Figures 2.10 – Self-Reconfigurable Modular System from Nomura et al. 2006.

Figure 2.11 – ‘Self-Reproducing Machine’ from Lipson et al. (2000).

Mobile robot motion planning can be classified into two categories: centralized and

distributed. Certainly the distributed algorithms are used for the control of swarm robots,

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

51

and these are the important notions for the self-reconfigurable systems. Regarding the

existing control systems of architecture, components of intelligent building systems, such

as heating, cooling, and lighting, can have distributed controls instead of centralized ones.

Local sensing, control, and actuation can be done in a distributed manner all around the

buildings, and they may provide autonomous systems that can respond to unpredictable

changes in their environments without central control by supervising units.

A more extreme conception of a modular system can be a ‘Smart Dust’ system as

introduced by Warneke et al. (2001). Simply reducing the size of the fundamental

composing mobile units down to the scale of ‘dust’ will have potential to introduce a new

kind of flexibility into our architectural envelopes. In biomedical application fields, the

ARES (Assembling Reconfigurable Endoluminal Surgical system) project from Italy is

envisioning the use of modular robotic systems that can be inserted into a human body

and can configure themselves into kinematic structures to operate inside the body (ARES,

2007). Potential applications of such concepts can be glazing systems with millions of

apertures in nano-scales which can be adjustable based upon the temperature, humidity,

and light. A more radical thought would be a building composed of tiny cells that can

respond to environmental changes, and can grow into morphologically desired

configurations. Furthermore, the actual subunits of the system can be made out of organic

biological materials or hybrid materials between synthetic materials. Finer and more

universal subunits can potentially adopt more varieties of tasks without having

preprogrammed knowledge of the possible work, and this flexibility is one of the greatest

potentials of the systems based on the swarm logic.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

52

Recently, use of RFID tags for material identification is getting attention from many

people in construction industries. Use of the smart dust devices (Werneke et al., 2001)

can surely provide the information simply beyond being identification tags: measuring

materials’ wear, detecting conditions of fatigue and so on. Furthermore, sensing and

actuation capabilities in micro-scale motes will allow desirable air-flow and heat

releasing mechanisms in the building envelopes. Kinematic abilities within the individual

motes (units) can adjust tiny vents for air circulation. Aggregations of movable cells that

can compose building skins into morphologically desired configurations to satisfy the

concurrently changing needs may be realizable in the future. Inability of buildings to

adapt and grow according to changes in environments and needs over time is a dilemma

for contemporary architects, and the concept of the micro-scale devices and further

development of them might give us the vehicle to solve these problems.

Figure 2.12 – Self-assembly results from minimization of the interfacial free energy of the liquid-
liquid interface (Bowden et al, 1997).

Additionally, one precedent that represents the issues of sizes of the elementary subunits

of systems is introduced by Bowden et al. (1997) in their paper, “Self-Assembly of

mesoscale objects into ordered two-dimensional arrays.” This paper introduces

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

53

‘artificially’ simulated examples of self-assembly and proves that the local interactions of

synthetically fabricated simple components can produce global configurations without

the presence of any external supervisions or directives. The experiment uses aggregations

of individual unit objects made of polydimethylsiloxane placed inside an oscillating

rotary shaker. Each object’s surfaces have different ‘wettability’ – either hydrophobic or

hydrophilic – and the objects interact at the interface of water by lateral capillary forces.

The author claimed that ‘Self-assembly results from minimization of the interfacial free

energy of the liquid-liquid interface.’ This technique is aiming for the fabrication of

complex systems such as applications in microelectronics, optics, micromechanical

systems, and displays, and the paper explains that the fairly simple characteristics of

individual members can achieve an emergent formation of cohesive structures by

interacting with each other. This experiment may not have a direct link to architecture in

its scale and material choices, but it is one of a few examples that represent the notion of

generative fabrication by artificial physical objects.

2.2.7 Self-Replicating machines: 3D printers

In the previous section, I explained that the construction automation during the 1980s in

Japan suggested the potential concept of self-reproduction in architecture. However, there

was still clear separation between assembler and assemblee, and there was no integration

between them. Within the contemporary practices in computer science, there exist more

progressive realizations of the self-reproductivity concept. The RepRap project by Adrian

Bowyer at Mechanical Engineering at the University of Bath and the Fab@Home project

by Hod Lipson at Cornell University are examples (2010). Bowyer explains self-

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

54

replication as the ability to reproduce components that are necessary to build a child

version of its own replication (RepRap, 2010). The RepRap system is a 3D printer that

builds parts up in layers of plastic, and the system has successfully printed majorities of

its own components to construct its child and grandchild models. Bowyer argues that the

system can conceptually demonstrate evolution and increase in number exponentially. As

we reviewed in earlier sections, many natural systems possess not only the ability to self-

reconfigure but also the ability to self-reproduce its components, similarly to cell growth

processes in any biological system.

Figure 2.13 – RepRap (left) from http://reprap.org/bin/view/Main/WebHome (RepRap, 2010).
Fab@Home, (right) Portable 3D printer by Lipson (Malone and Lipson, 2006). Printable Battery:
freeform fabrication of a complete Zn-air battery (bottom-left) Printable Actuator: Ionomeric
Polymer-Metal Composite artificial muscle (bottom-right) by Lipson (Malone and Lipson, 2005)

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

55

Bottom‐upTop‐down

Fixed Replaceable

Requires Assembler Self‐Reconfigurable

Design

One‐of‐a‐kind Kit‐of‐parts

Reconfigurable

Closed Planning Open Planning

Self‐Reproduction

One‐of‐a‐kind
A House

Single Freestanding object buildings
with a few types of space

requirements.
= Auditorium, theaters, and so on.

Distinct and clear hierarchical
relationships among programs

of components are low.

Kit‐of‐parts
Housings, many units.
Mixed‐use, multiple‐program
components beyond a certain quantity
Clusters of non‐hierarchical
components.
Buildings composed of many repetitive
components or programs.
of components are high.
(residential units over 5000, etc.)

Time varying design system

These speculative research projects by computer scientists represent a great endeavor to

realize artificial emergence. We reviewed self-reconfigurability seen in swarm robotics

using distributed controls, and the concept of self-reproduction or self-repair seen in

current digital fabrication systems. They both seem to represent great steps for artificially

creating a subunit that can assimilate emergent growth processes over time. Self-

reconfigurability, distributed controls, and a concept of self-reproduction or self-repair

are definitely key characteristics for artificially creating a subunit that can assimilate

emergent growth processes over time.

Figure 2.14 – The Matrix that shows various systems. Categorized based on the concept of
open/closed planning.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

56

2.3 Urban-Scale Systems: City Formation and Emergent Growth

The following section reviews self-organizing characteristics seen in many urban-scale

design examples. The examples from urban scale are often results of collective decisions

over a long span of time. Informal settlements are one of the classic examples of

emergent formation in urban scale. I will also review designers’ active efforts to integrate

group dynamics into design developments. After the review of actual realized precedents,

I would like to examine virtual systems that simulate growth in or production of cities.

Together with physical and virtual precedents, this section will introduce real urban

phenomena and their potential procedural descriptions.

2.3.1 Kowloon Walled City – Architecture in a state of anarchy

Ironically, one of the man-made structures that display the dynamics of self-organization

was not planned by any notable individuals or groups of architects. Kowloon Walled City

in Hong Kong (Lambot, 1999) was neither a beautiful nor successful living space in our

standard sense of perception; however, this is one of the rare synthetic examples of

emergence in a building construction process which was achieved within less than the

lifetime of a single generation.

Figure 2.15 – Kowloon Walled City in the 1980s before its demolition (Lambot, 1999)

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

57

Figure 2.16a: Kowloon Walled City in 1973 (Lambot, 1999)

Figure 2.16b: Kowloon Walled City in 1994 before its demolition

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

58

The political relations between China and Britain during the last century had made the

Kowloon area in Hong King a political and diplomatic black hole which had been free of

any laws or regulations from either government. As a consequence, Kowloon had become

an asylum for many refugees escaping from the civil war and political prosecutions by

the Communist government at the time, and had formed a rare model of an anarchist city.

Figure 2.17a: South Elevation of Kowloon Walled City (Lambot, 1999)

Figure 2.17b: Plan of Kowloon Walled City (Lambot, 1999)

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

59

There were only two regulations. One was a fourteen-story height restriction due to the

proximity of Kai Tak Airport, Hong Kong’s old international airport. The other was the

authorized installation of electricity to reduce the risk of fire from open flames.

The structure was not planned from the outset for residents numbering more than 35,000;

they had displayed incredible tolerance and adaptability in accepting radical increase of

their population over a relatively short period of time. The city might not have been the

most efficient building in terms of circulation. Labyrinthine interior networks were far

from efficient compared to ideals of conventional axial building planning in modern

architecture planning. However, each resident’s needs for basic living were mostly

satisfied to some degree by constantly altering its morphology. In other words, scarcity in

some functionality had triggered motivation for another new construction to adapt new

features, such that the complex as a whole displayed incredible robustness and flexibility.

We have witnessed self-organizing qualities in the formation of many historical cities,

and cities such as Mouray Idriss in Morocco are often referred to as an example of

emergence in human civilization. But the Kowloon example had been accomplished

within a relatively short period of time and on a scale of several building complexes. This

self-organizing structure actively adapted and regenerated itself into a working model of

a metabolic system in architecture by accommodating endless incoming refugees.

Unprecedented adaptability exhibited in this project was achieved by relatively

unsophisticated and nonprofessional carpentry work by local residents using low-quality

reinforced concrete construction.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

60

Building Scale Application
ex. Kowloon Walled City.

Urban Growth of Cities
Mouray Idriss, etc

Informal settlements
Favela in Brazil

Traditional Settlements
Yemen, Ethiopia, etc

100 ‐1000 years Over 1000 years 50 years 5 – 20 years

geographical + defense geographical + defense + strong boundary conditions + constraints from city zoning

Masonry Mud‐Bricks Reinforced Concrete Debris, Scraps, Masonry, etc

Growth periods in Years:

Primary composing materials:

Boundary conditions (constraints):

The crudeness in construction qualities contributed to the spontaneous growth of the

structure to some degree. In exchange for construction precision and quality, they gained

extremely unique, almost organic, plasticity in erection sequences, and these seemingly

primitive construction methods led them to achieve unprecedented adaptability in their

architecture. Not only Kowloon Walled City, but many temporary housings or shelters in

many post-war sites in the world have often possessed a similar organic quality. They are

often called “barracks” and are usually made of debris.

The residents sacrificed elements of efficiency by continual additions and seemingly

haphazard extensions and alterations. In return, they resolved many individual needs

among local neighborhoods and were almost heuristically grown into a multi-

programmed complex structure which included schools, kindergartens, shops, hospital,

dentist, and communal spaces such as courtyards in many residual spaces.

Figure 2.18 – Different types of urban growth models

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

61

Of course there were many negative aspects in Kowloon Walled City, such as absence of

natural lighting deep inside the structure. Some labyrinthine corridors needed to be

constantly illuminated by fluorescent lights even the middle of the day, and the same

construction or design methodology cannot be directly applied to our contemporary

social environments. It is unlikely that average people of the day will be willing to live in

this chaotic stew of social entities. However, I believe that the type of growth model that

Kowloon represented showed us a potential existence of completely different

methodologies in building design compared to our relatively top-down conventional

design strategies. We may find some potential benefits by learning from fundamental

design principles unique to Kowloon Walled City.

2.3.2 Participatory Design Guided by professionals

In contrast to the physical implementations that we have reviewed in the last section,

there are strategies to use group dynamics directed by human participation to evolve

designs. Lucian Kroll and Christopher Alexander are well-known for their participatory

design practices. While many practitioners, such as Metabolists, had emphasized the

invention of new physical components, Kroll and Alexander’s strategies seem to put

more emphasis on user involvement in design processes. Just as some of the synthetic

systems in various areas have started to gain benefits by adopting the distributed logics

inspired by many natural systems, Kroll and Alexander believe that architectural design

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

62

processes can potentially benefit from the application of decentralized thinking as a core

ideological innovation.

Alexander introduced “a pattern language” in 1977, proposing 253 unitary patterns

derived from traditional architecture. These patterns can be used as a generative grammar

allowing participation of non-professionals and users to open up the processes of design.

Later, his concept of the pattern language has become an inspiration for the current

concept of object-oriented programming beyond the field of architecture. An idea of a

production platform that allows multiple users’ engagement has become an inspiration

for many object-oriented programming languages. They allow multiple programmers’

simultaneous participation to achieve a common goal for their production. This approach

has become a key concept for the foundation of modern software engineering,

accelerating the production rate. However, the spatial and geometrical production

platforms of such systems are yet to be clearly defined in many fields. Some CAD

systems allow users to work on different areas of building plans by external references,

but they are merely for drafting and documentation purposes and not useful for

organizing to reflect and to integrate multiple designers’ feedbacks into a production

done in a collective manner. There are not many successful computational multi-

participatory production platforms that can support design processes of spatial and

geometrical forms. Although Alexander’s endeavors are still based on manual processes

without use of computers, they are one of only a few examples that challenge the notion

of cooperation in the context of multi-user engagement platform development for

physical spatial design production.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

63

Lucian Kroll’s work is often called anarchitecture due to his unique design process based

on group dynamics (Gassel, 1979). His work displays a more or less similar quality to

what we have seen in the Kowloon Walled City. In his housing project for medical

students in the Catholic University in Louvain, he intentionally avoided being an

authoritative expert figure. Rather than imposing a top-down master plan, he stayed as an

organizer throughout the entire design and construction process. In order to gain

maximum feedback and ideas from his clients, Kroll believed in group participation. He

objected to the standard role of the architect who often imposes his or her own ideal and

aesthetic values.

In this project, students as the future users negotiated with each other to design their own

living spaces. In the beginning of the process, he provided a large open space for a group

of students. Then the interior space was divided into smaller cells by industrial modular

wall systems. Walls were installed by the students themselves. The resulting plan does

not possess any clear global organizational patterns like those seen in conventional

academic facilities; they simply look quite random. In fact, this is a rare example of

design that was initiated and directed primarily from agglomeration of local-level

negotiations. As a result, priority for design decisions was given to the satisfactory

conclusion of the local-scale environments over imposition of global scale functionality.

It was a unique experiment to seek global order from many local interactions.

The same disorderly quality dictates the appearance of the buildings and their façade. No

two window fenestration patterns look alike. It was partly due to Kroll’s ideology of

avoiding mindless repetitions. He intentionally used this strategy to gain maximum

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

64

diversity in his design. It is a question whether the strategy has any connection with his

more profound attitude toward participatory design, but the Kowloon-like disorderly

appearance of his design may have some relevance to his unique derivation of building

planning based on group dynamics.

Figure 2.19 – Medical Student Housing at Catholic University of Louvain by L. Kroll (left)
Interior Space made freely by students using panel wall system (middle & right) (Gassel, 1979)

Just as some network communication applications are gaining adaptability and robustness

within their systems by applying decentralized network hubs and connections,

applications of bottom-up logic in design may have a potential to introduce new adaptive

qualities in building. Kowloon Walled City in Hong Kong had displayed incredible

flexibility and capacities to transform itself into a structure to accommodate more than

35,000 inhabitants from a few thousands within a relatively short period of forty years.

The resulting structures had not produced all positive consequences in terms of many

aspects of living such as lighting, circulation, and hygiene; however, the flexibility

exhibited by the structures lends credibility to the existence of building processes

different from conventional design methodologies typically led by professionals with

comprehensive blueprints. Self-organizing characteristics seen in these precedents show

some unusual flexibility, and active applications of computation may enhance them by

compensating for the aforementioned shortcomings.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

65

Review of Urban-Scale Simulations: Computational methods

There are existing software applications to generate hypothetical virtual cities. In the next

section, I would like to review several of them and explain their different characteristics

in processes.

2.3.3 Fractals, DLA, and Agents: Examples by M. Batty at CASA

One of the earlier attempts to describe growth processes of cities mathematically and

scientifically was made by M. Batty at the Centre for Advanced Spatial Analysis (CASA)

at University College London (UCL). In Fractal Cities (1994), he used fractals as a

mathematical model to simulate urban settlement patterns of various cities and found

correlations among his mathematical models and the growth patterns of actual cities. His

work has focused on analyzing correlations among urban densities and spatial and

geometrical characteristics of urban growth. He has also looked at algorithms such as

Diffusion-limited aggregation (DLA) and has provided potential new approaches to

measuring urban densities. His study has become one of the pioneering works in the

computational city modeling field and has established several potential application areas

for computational methods such as DLA and computational agents.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

66

Figure 2.20 – Sequential output of favela experiments (Left). Urban growth simulation of Acera,
Ghana using agents by Sobreira at CASA, UCL (Right). (Barros, J. and Sobreira, F. 2002)

Figure 2.21 – Urban growth simulation of Porto Alegre using agents by Barros at CASA, UCL.
(Barros, J. and Sobreira, F. 2002)

Batty’s work had mainly focused on relatively formally developed modern cities such as

London, well into the mid-1990s. However, in 2002 Barros and Sobreira from CASA at

UCL, under the direction of Batty, introduced a model to simulate spontaneous growth of

favelas in Brazil using a decentralized agent model. A decentralized agent model can

simulate collective actions by multiple individuals, and enables the system to describe

gradual growth. Their outputs are based on a discrete cell environment and do not

provide as many geometrical details of building information as the model by Muller.

However, the use of computational agents is a valid strategy enabling Barros and

Sobreira to implement local interactions in time series. In their system, agents do not use

any natural/environmental conditions as an attractor for their behavior. There are also

similar systems called 4D-CAD systems developed by research institutes in many general

construction companies, but they are primarily for organizing on-site construction

sequences in time series.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

67

The development of a novel system that can simulate the spontaneous growth of cities in

precise geometrical detail based on a given landform and environmental conditions will

be a contribution to both landscape and architectural computation studies. In this thesis,

experiments in Chapter 6 present a different approach to this goal.

2.3.4 L-system and Shape Grammar: City Engine

Müller and Parish from ETH Zürich have developed a system called CityEngine (2001)

which can create realistic representations of comprehensive 3D city models including

roadmaps and buildings from a few sets of statistical and geographical input data. The

system is intended to produce outputs highly controllable by users. The system’s realistic

outputs have been used for production of virtual movie scenes.

However, their system is not designed to simulate the gradual growth processes of cities

and hence cannot represent spontaneous settlement patterns over time. Müller’s

generative process relies on existing cities’ knowledge-based typological patterns in order

to provide one particular state of a city, but not a continuum: the rectangular grid in New

York, the Haussmannian radial grid in Paris, or the residential development of an

American suburb. The system also uses correlation between landscape and building

layout as a relatively minor criterion for generation of the city. Thus, the system’s single-

shot outcomes are not a simulation of emergent processes.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

68

Figure 2.22 – Street Patterns used in Procedural Modeling, CityEngine. (Müller and Parish, 2001)

Figure 2.23 – CityEngine (Müller and Parish, 2001)

Their generative method is based on a procedural creation of virtual urban environments.

This procedural approach is also often called grammar-based generation of models and

has been used widely in computer graphics to create plant geometries. Lindenmayer

originally developed grammar-based descriptions of plant geometries, and this method is

called L-systems after him. In L-systems, geometries are represented and encoded in

sequences of strings, and the geometric creations and transformations are replaced by

directly operating on these symbolic representations of strings. These operations become

rules for grammar of a certain geometric group. Later, in the field of architecture, G.

Stiny developed “shape grammar,” which defines rules directly on shapes instead of

operating on strings. This shape-based symbolic transformation has been used by some

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

69

communities of architects and designers to develop design grammars that can capture

specific styles of design instances or signature expressions by famous architects such as

Palladio, Frank Lloyd Wright, Alvaro Siza, and others. This system captures some design

characteristics of individual expressions quite well and has produced some instances that

are almost indistinguishable from originals (Duarte, 2002).

These transformation rules need to be obtained, defined, or formulated somehow, and

there is no automatic, or even systematic, way to automatically create these rules. There

are some attempts to auto-generate these rules with the help of evolutionary computation

techniques such as genetic algorithms. Combining a genetic algorithm and the shape

grammar has been proposed to heuristically find rules that satisfy fitness factors.

However, this approach is computationally expensive and not practical at the level of

extracting the rules that define signature expressions of any actual human designers.

Müller’s system was also based on this shape grammar and L-system, and the choice of

these methods was appropriate for capturing certain characteristics of city street and

building layouts. However, those characteristics are originally imposed by the creators

(or users) of the system as transformation rules, and the outputs of the system are, to

some degree, influenced by their interpretations of city layout. Their intents are to

produce comprehensive visual outputs of a city using a relatively small set of statistical

and geographical input data, but achieving the fabrication of fine details without

providing any knowledge-based interpretations from existing precedents is not yet even

close to being feasible. Usually the results from these systems allow some level of

reliance on data external to the sole input information.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

70

Unlike extremely scientific and analytical attitudes toward derivation processes of output

designs by researchers such as M. Batty at UCL, Müller’s priority seems to be the

visualization of detailed geometries. But, as a representation tool, there is no doubt that

the tool performs extremely successfully. The design method proposed by Alexander and

Manheim (1962) nearly four decades ago displayed a quite contrasting approach that does

not use any data external to the subjects under the design, and I will review this in the

next section.

Müller’s system from 2001 produces only an urban model that is static in time, but a new

paper (Müller et al. 2009) represents a system that can simulate an urban model over time.

In addition to L-system and shape grammar from their previous system, they include

growth and expansion rates for streets and some building blocks. Those rates are

influenced by various user input parameters that control traffic intensities and economies.

Again, in this system, priority was given to the generation and control of realistic and

detailed three-dimensional models, and many geometrical configurations are given by

user inputs or Müller’s implementation of city and building forms.

This relatively top-down characteristic of their generative system is probably suited for

simulating highly detailed models of cities which were produced as a result of imposition

of modern city planning methodologies. Paris, Brasilia, and New Delhi probably are good

examples of those cities, being highly influenced by modern urban planning concepts

such as zoning. However, simulation of informal and spontaneous settlements over long

periods of time might be a challenge. Oftentimes urban configurations developed by

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

71

spontaneous settlements are not the results of impositions of specific urban forms and are

hard to represent by a collage of discretized typologies.

In conclusion, a system such as CityEngine can simulate urban models that are the

product of modern planning methodologies based on relatively top-down planning, and

Müller has proved that the system can potentially simulate growth over time. However,

simulation of informal (spontaneous) settlements may require a different type of

methodology, as the characteristics of these settlements were normally not imposed

(produced) by any hierarchical structure of typological templates based on procedural

operations. Alexander offered a similar discussion in his essay, “A City is not a Tree”

(1965) and referred to two different types of city formation and planning processes.

I want to call those cities which have arisen more or less spontaneously over
many, many years natural cities. And I shall call those cities and parts of cities
which have been deliberately created by designers and planners artificial cities.
Siena, Liverpool, Kyoto, Manhattan are examples of natural cities. Levittown,
Chandigarh, and the British New Towns are examples of artificial cities.

It is more and more widely recognized today that there is some essential
ingredient missing from artificial cities. When compared with ancient cities that
have acquired the patina of life, our modern attempts to create cities artificially
are, from a human point of view, entirely unsuccessful.

Alexander’s criticism about the modern planning methodologies makes us aware that

there is a different possibility, for different implementation of a city generation process.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

72

2.3.5 Superimposition Technique by C. Alexander and M. L. Manheim

Alexander and Manheim in "The Use of Diagrams in Highway Route Location"

(Alexander and Manheim 1962) proposed a design derivation method that is different

from methods based on symbolic design patterns and transformations, often represented

by shape grammar.

Figures 2.24a –

Site plan and proposed highway layout (top-
left). Process of superimpositions (top-right).
Tree diagram as a composition order (left).
Examples of 26 geographically associated data
of the site (bottom).

Their method does not impose any formal design patterns in physical format, yet their

system shows efforts to extract design solutions that are fairly true to input data. This

design derivation process seems to possess similar characteristics to those of self-

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

73

organization seen in many natural systems. New design of a road in a landscape emerges

from correlations among 26 geographically associated data of the site, such as land costs,

earthwork costs, noise level, travel time, drainage patterns, air pollution, and so on. These

26 data maps show different degrees of suitability by shade of gray with respect to the

aforementioned different criteria or parameters. They overlay and superimpose these

gradient maps based on a specific grouping order and weights for each map using a

composition proposed in their tree diagram. The result of the composite of factors

produces a spatial intersection of feasible areas for a proposed highway lines with darker

tones representing more desirable areas.

Figure 2.24b – From “The use of diagrams in highway route location: An experiment” C.
Alexander and M. L. Manheim (1962).

In their experiment in the 1960s, superimpositions of gradient maps were all executed

manually and seem to lack precision in the process. However, the novel derivation

process of the method is obviously the most valuable part of the study, and we now can

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

74

simulate the same superimposition technique using readily available graphic processing

applications and data from Geographic Information Systems (GIS). Derivations of

physical design configurations without providing any hints of predefined formal design

templates are extremely rare in any past design methodologies, and this short study sheds

light on design derivation principles similar to characteristics seen in self-organization

and emergence.

The only relatively unconvincing part of the experiment is the way Alexander and

Manheim introduced the tree diagram as a composition order. This tree seems to be

relatively arbitrarily imposed by them, and there is no sufficiently logical explanation

why they chose this specific composition out of all possible orders. This formulation of a

tree diagram can be gained from correlations among examples of similar highway designs

and their conditions from many existing sites. For example, use of learning algorithms

such as neural networks to develop a tree-like structure solely from data from many

existing highway structures would be ideal. We can form a neural network based on

ample data and resulting road configurations from many existing precedents and derive a

tree-like diagram using a back-propagation technique solely from given data without any

subjective interpretations. This thorough approach could be more appropriate for the

original intention and ambition of their project.

Additionally, the superimposition of gradient maps is all done by linear summation of

pixels’ tone value. This over-simplified process may fail to capture some inter-relational

characteristics among data and road configurations. A good example similarly indicating

this shortcoming can be seen in a comparison of a single-layer perceptron (feed-forward

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

75

Input_01

Input_02

Input_03

Input_26

Input Layer Hidden Layer 1 Hidden Layer 2

Output

Weight01 Weight01

Weight01

Back-propagates

Existing
precedent

Existing
precedent

neural network) and a multi-layer perceptron. The single-layer perceptron is also known

as a linear classifier, and it can only solve linearly separable problems. In general, two

point sets are linearly separable in n-dimensional space if they can be separated by a

single decision surface (a topologically (n-1)-dimensional hyperplane). For example, a

logical exclusive-OR (XOR) function’s two-input patterns cannot be separable with a

single line (Minsky and Papert, 1972). On the other hand, the multi-layer perceptron can

solve linearly non-separable problems using the back-propagation technique. Here, we

are seeking the unknown classifier that can provide feasible highway locations from

various data inputs. Since we do not know whether this unknown classifier will be

dealing with linearly separable or non-separable problems, it is preferable to use

techniques that have the characteristic of a multi-layer perceptron.

Figure 2.25 – Conceptual diagram showing a Neural Network with 26 inputs.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

76

Another important question is how we can extend this method to real-time dynamic

scenarios. Many criteria used in this experiment, such as local population density, travel

time, and various costs associated with geographic locations, are time-varying dynamic

values. In principle, those gradient maps can be expressed as a function of time, and

solutions from those criteria can also be a non-static ever-changing figure. The increasing

processing power of computers allows us to handle dynamic data, and the type of design

derivation described in this experiment will have more promise with the use of

computation.

2.4 Summary and analysis of the background

In the previous sections, natural systems and artificial systems are reviewed in regard to

emergence and their self-organizing characteristics. In the following section, as a

conclusion of this chapter, I would like to summarize and classify the types of systems

that were reviewed in the previous sections. In order to compare and evaluate different

natural and artificial systems, Time and Scale are key criteria. With respect to time and

scale, I would like to analyze what is missing in current artificial systems compared to the

examples of natural systems, and speculate about future directions for improvement of

current artificial systems.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

77

2.4.1 Subunits

All the systems introduced in the last section are composed of some kinds of subunits. A

whole system consists of an aggregation of finite elements with certain properties and/or

active behaviors. We learned that local interactions among these elements are normally

the main directives to create globally meaningful behaviors. These subunits can be inert

or animated, static or self-driven objects. Sand grains in a vast desert are inert objects,

and due to the results of aerodynamics and various physical forces around the particles

(such as friction), they form a rippled dune. Subunits can be organic or non-organic

entities. In the case of the Belousov-Zhabotinski reaction, chemical reactants are the

subunits forming spiral patterns. Organic cells in slime mold forming structured tissues

are active self-driven subunits. They can also be transported by other elements of the

systems, for example, by the social insects. A definition of subunits within one system is

not always clear in artificial systems. Metabolists produced a prefabricated capsule as a

subunit of buildings. However, regarding the many emergent formations of cities, a

subunit can be a single building or a single mud-brick as an atomic unit of global

structures.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

78

SCALE of Subunits relative to size of entire system (Malleability, pliability of subunits)
/Subunits /Size /Duration of Construction

Historical Cities:

Masonry units /small /Long, over 1000 yrs
Indiv. Building / large

Traditional Housings:

Mud brick /small / Long , over 1000 yrs

Favelas: in Brazil, etc.
Informal (spontaneous) settlements

Various kinds of Debris /small /short ±50yrs
Masonry, panels, etc.

Housing in Hong Kong

Reinforced concrete/small /short less than
40yrs

Modular systems:

Kit‐of‐parts /small /short
Components, joints, etc.
Fixed units

Modular systems:

Metabolism

Pre‐fabricated units /large /short less than a
year
Theoretically reconfigurable

Collective Constructions

Various Debris /very small /Short to Long
periods

Natural Systems

/Very small /short periods
Sand Particles (Dune Formations)
Belousov‐Zhabotinski reaction
(chemical reactions)

2.4.2 Scale

Figure 2.26 – Various scales of subunits relative to size of entire system

In order to objectively compare the size of these subunits, I propose to use a size relative

to the size of the entire system as a reference for measurement. A volume of a single

subunit divided by the entire size of the system is a good logical step to compare inherent

characteristics of systems.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

79

As a result, regardless of the sizes of entire systems, the natural systems tend to show

smaller ratios for this relationship compared to those of many artificial systems,

especially ones that were deliberately designed by professionals. Even though Bernard

convection can be formulated within a small laboratory dish (a 3-inch-diameter circular

vessel), the size of a fluid particle relative to an emerging size of cell cluster can be as

small as a sand grain inside a dune. Termite nests are composed of varied debris

transported by termites, and their sizes are much finer than replaceable capsules (room

units) proposed by Metabolists. As we change the scale to urban scale, this relationship

for artificial systems reduces – the size of the subunits for cities can be considerably

smaller than Metabolists’ buildings. When we recognize reduction in this relative size of

a subunit, systems start to display more prominent characteristics of emergent behaviors.

Many Metabolist and modular systems’ building configurations are all predetermined by

designers, but we witnessed examples of more heuristic and unpredictable growth

patterns and adaptations from urban-scale artificial systems. However, examples on an

urban scale require more time for growth. The graph in Figure 2.27 shows the relative

size of a subunit on the x-axis and the lifetime or time for a growth period (in years) on

the y-axis. Artificial systems that I reviewed occupy a diagonal zone from top-left to

lower-right of the graph, and more deliberately designed systems tend to cluster at the

lower right-hand side.

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

80

Li
fe

 tim
e

of
 a

 s
ys

te
m

 (T
im

e
fo

r g
ro

w
th

 y
ea

rs
)

A size of subunit relative to a size of entire system

1000 yrs

100 yrs

10 yrs

3 yrs

0 yrs
0.00 0.05

Natural Systems:
Faster growth, Finer aggregates

Artif icial Systems:

Urban growth:
Longer growth periods
Smaller subunits.

Unique cases: Kawloon, Favelas
Relatively shorter growth periods
More plasticity and freedom in
construction subunits.

Metabolism, Modular systems:
Aim for reconfiguration in Shorter
periods.
Larger subunits

a subunit (vol.)
a total system (vol.)

Informal settlements: Favelas

Reconfigurable systems

Figure 2.27 – Various Systems’ Lifetime and their subunit scales

2.4.3 Time

The lifetime of a system, or the time for a growth sequence of a system, varies depending

on the system. Growth processes of cities sometimes require more than a thousand years

in order to reach a fully developed stage of evolution. Growth times for natural systems

vary considerably. For example, some species of trees (such as Norway Spruce) continue

to live more than a thousand years, whereas micro-organisms such as slime mold grow

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

81

into an interconnected network of protoplasmic strands in a day. Artificial systems tend

to require longer periods of time to actively organize themselves into a meaningful form,

or to require assistance from other assembler systems. Modular or replaceable capsules

are inert subunits that require assemblers such as heavy-duty cranes. Reconfigurable

swarm robotics systems proposed by computer scientists are slightly more advanced

systems that afford active behaviors to their subunits; thus they can be located to the left

side of modular capsules proposed by Metabolists in the graph in Figure 2.27. More

speculative concepts proposed by computer scientists – Smart Dusts or self-reproducing

machines – are all efforts to move toward the lower left-hand corner of the graph in

Figure 2.27. In order to fulfill this gap between natural and artificial systems, it may be

inferred that subunits of artificial systems need to gain more active dynamic behaviors

while maintaining a fine granular size relative to global systems. Recent interests in

nano/micro robotics all point toward a biomimetic engineering direction, and

development of such nano devices can be one way to assimilate emergence.

2.4.4 Discussion and Critique

Many formal and structural engineering aspects of natural and physical systems have

been well investigated and successfully applied to various synthetic objects in our daily

lives, including architecture. Natural distributions of structural forces seen in branches of

trees, soap bubbles, or formations of sea-shells have been an inspiration for many

architects. Structural elements in Gothic churches often mimic trees, and Gaudi in the

19th century further developed biomorphic forms to take advantage of natural force flows

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

82

in organic shapes. The formal aspect of architecture has been strongly influenced by

various biological structures.

However, logistics and relatively internal aspects of biological systems, such as collective

behaviors seen in aforementioned collective construction, have yet to be clearly analyzed

and applied to our synthetic design processes, particularly the cases where there is no

blueprint or recipe for global configurations available or defined. In the area of computer

science, increasing numbers of scientists are starting to pay attention to self-organizing

systems, particularly those seen in the social insects, and they try to draw on these

systems to devise problem-solving methods. This approach focuses on the characteristics

of self-organization, such as distributedness, flexibility, robustness, and interactions

among relatively simple agents. Most of the applications so far have been in the areas of

combinatorial optimization, communications networks, and control algorithms for

robotics (Deneubourg et al., 1990). But even in computer science, not all of the

applications are anywhere close to practicality yet, though researchers are definitely well

aware of the potential advantages of the bio-inspired distributed systems to remedy many

weaknesses in our existing centralized control systems. Eventually, their goal is to design

artificial distributed systems that self-organize to solve problems and replace

conventional centralized control by using inspirations from social insect behavior.

In architecture, few structures have ever been built or conceived based on the active

application of the aforementioned logics from natural systems. Excluding some of the

emergent formations of cities on larger scales over longer spans of time, adaptation of

self-organization to architectural creations is an uncultivated area of study worthy of

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

83

investigation. Although there are some studies of urban-scale phenomena using agent-

based models, I believe that we have yet to fully understand the latent potential of self-

organization, distributed systems, and collective intelligence in the context of

architectural applications. It is not simply an investigation of novelty in style, trend, mode,

or superficial formal representation. It is a search for an evolution – fundamentally, a new

attitude toward the creation of artifacts among us.

Ironically enough, the fact that we humans can occasionally build highly sophisticated,

yet dysfunctional objects, can be considered proof of our being superior to the other

species in some respects, or at least an indication of unique characteristics inherent in

human intelligence. Motivations toward collective goals beyond merely functional or

practical outcomes are rarely seen in any other biological species besides humans, but it

is quite easy to find such examples in the field of architecture when we consider the

current formalistically articulated trends in the discipline. They are an indication of our

aptitudes for more advanced intellectual activities and productions. These behaviors or

creative tendencies are perhaps one natural consequence of humans’ being capable of

storing more information; thus immense information for globally more complex

configurations can be handled by individual members as a blueprint.

Nevertheless, our construction processes – even at practical levels of applications – do

not seem to have reached the stage of perfection yet; they may well be on the brink of a

necessary transition from conventional centralized schemes to more distributed systems.

Having complete knowledge about the final global objectives in construction is getting

increasingly difficult as the scale and complexity of the buildings start to exceed our

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

84

capacities for individual comprehension. Indeed, humans have limited processing speeds

and cache spaces as individuals. Considering that the termites’ and wasps’ nest

constructions require more than the period of their individual lifespans, and some of their

nest sizes (in relation to body size) are way beyond the scale of any human structures

ever built, we have yet to rival the magnitude of their construction scales and durations.

One species of termites called Macrotermes bellicosus are known to be able to build

structures over 30m in diameter and 6m in height (Grasse, 1984), and the size of the

structures in proportion to human height is over a mile (Howse, 1970). These facts may

indicate the existence of methodologies that can possibly enhance our conventional

understandings of habitats.

2.4.5 Conclusions

The computational experiment by Theraulaz and Bonabeau (1995a, 1995b) introduced in

an earlier section suggests that structures directed toward certain properties can be

describable purely by locally implemented processes – ‘rules’ – instead of providing a

complete set of blueprints, so that the structures can in principle continue to grow with

the dynamic changes from the external environment or circumstances associated with the

structure.

One remarkable finding from the observations of collective construction by insects is that

their processes do not seem to have a discrete ‘design phase’ before the construction.

‘Design,’ ‘construction,’ and ‘operation’ are seamless concurrent activities in their

processes, and these characteristics help them to gain significant flexibility in their

Chapter 2: General characteristics of Self-organizing Strategies and their Computational Simulations

85

habitat designs. Development of flexible and adaptable architecture has been a perennial

theme among practitioners, and some of the failures among the Metabolists in the 1960s

(Frampton, 1992) clearly indicate the difficulties of designing universal subunits that

could endlessly tolerate technological, environmental, and circumstantial changes

associated with structures. In order for structures to self-assemble and dynamically grow,

the scale of the movable or replaceable components needs to be examined, as our

structures at architectural scales are under different magnitudes of influence from

physical forces such as gravity, compared to wasp nests or cells in slime mold. Simple

adaptation of distributed logics in morphological aspects of design alone will not be

adequate to realize truly adaptable intelligent structures. Consistent adaptation of

distributed concepts throughout all phases of projects may be an essential principle for

the evolution of robust and flexible structures. Processes of coming future structures may

not possess discrete phases such as design, construction, operation, reuse, and demolition;

the alternative task for us may be encoding the spontaneous growth of structures as a

genotype, rather than providing complete sets of static blueprints.

Chapter 3: Computational Method of Self-organization

86

Chapter 3

Computational Method of
Self-organization

Introduction

The primary objective of this chapter is to introduce three different types (or phases) of

computational methods that are related to the concept of emergence. These methods are

categorized into different types based on different objectives – evaluation, design search,

and growth and adaptation.

This thesis’s primary objective is in the third category of computational method: growth

and adaptation. As one of the promising computational approaches for implementing

growth and adaptation, the concept of self-organizing computation is introduced. In

chapter 2, existing examples of self-organization were reviewed in relation to their

subunits and time for growth periods; in this chapter, computational implementation and

applications of these dynamic mechanisms are presented through more precise definitions

of the principles and two application examples that follow.

Chapter 3: Computational Method of Self-organization

87

3.1 Computational Methods:
Three Phases of Computational Applications in Design

Figure 3.1 – Three phases of computational applications in design

One of the objectives of the thesis is to investigate and explore computational methods

related to the concept of emergence. In order to clarify the relationship between

computation and design, I categorize computational methods in the context of design into

three different types based on different uses – evaluation, search, and growth and

adaptation. They are not strictly separable, and are to some extent interrelated. For

instance, implementation of the design search method often requires implementation of

Model Result(s)Evaluations
Simulation

Computational Design: Stages (phases) of applications (a system requires evaluations)

Conditions
/ Constraints

Model(s)
(Solution)

Search
Selection/Optimization

1.Evaluation/Simulation

2.Design Search: Selection/Optimization

Model (t) Model (t + ∆t)Update: algorithm

3. Growth (Updatable) model Space-Time continuum, Time varying system

Feedback from model’s prior state to renew its state

Chapter 3: Computational Method of Self-organization

88

the evaluation method in advance. Relevant existing algorithmic approaches for each

category of computational methods are introduced.

3.1.1 Method 1: Evaluation

The first type of method is to use computation as an evaluation tool for a model. In this

case, a model is given as an input, and the computational tool is used to analyze the

model’s properties, performance, and relationships to its environment. Structural analysis

software is one example of this category, since it can derive a model’s structural

performance from a given model as an input. Evacuation simulation software is another

computational application which falls into this category. Occupants’ behaviors can be

computationally derived from one instance of spatial configuration.

Quantitative / Qualitative Evaluation

One problem of computation in architectural applications is that the evaluation of

architectural models rarely forms deterministic and analytical utility functions.

Evaluation of design cannot be reduced to equations.

In the case of structural analysis software, the input model will typically deliver a single

result though there can be multiple solutions through numerical computation such as

Model Result(s)Evaluations
Simulation

1.Evaluation/Simulation

Chapter 3: Computational Method of Self-organization

89

finite element analysis (FEM), and hence the result can be obtained quantitatively. When

we can get this one-to-one mapping from a model to an evaluation by formulating

numerical equations, evaluation is deterministic. Such quantitative evaluations are

relatively straightforward.

The aforementioned evacuation simulation might provide multiple interpretations from a

single spatial model, or a single run of a simulation might not be sufficient to determine

spatial characteristics of a model. Escaping occupants’ behaviors are often stochastically

applied, based on statistical information about human behaviors under certain

circumstances; every run of the simulation run can be slightly different. Normally,

analyses based on stochastic simulations require millions of trials to verify their results.

In this case, evaluation has, to some degree, qualitative characteristics.

Figures 3.2 – Various Evaluation Tools in Architecture:

Quantitative Evaluations: Top-left: FEM-based structural analysis tools (From www.auto
desk.com), Top-middle: (From www.hitachi-kokusai.co.jp/goyo/html/kaiseki.html) Top-right &
bottom-left: Evacuation simulations software package by Forum8 co. ltd. (http://forum8.co.jp)
Qualitative Evaluation: Agent-based visualization tool by the author. (Narahara, 2007a; 2007b)

H

co

b

E

ev

o

ot

ev

M

en

so

ca

co

d

3

T

ca

/

2.D

However, the

omplexity o

e evaluated b

Even if you

valuations fr

f all objectiv

ther solution

valuations. I

Major object

nvironmenta

ome extent b

annot even b

ommon issu

escribable.

.1.2 Meth

The second c

ategory, a co

Conditions
/ Constraints

Design Sea

ere are case

r non-linear

by a single e

u can formu

from multiple

ves does not

ns. Concept

I will cover t

ive evaluati

al, regulation

by using tod

be analytical

ues in desig

hod 2: Des

category of

omputation t

S

arch: Selec

es where we

rity of the pr

equation. Mu

ulate multip

e results are

t represent ch

ts such as P

the backgrou

ion criteria w

n-related iss

day’s advanc

lly formulate

gn practice

sign Searc

f computatio

tool derives

Chapt

Search
Selection/Optimiz

ction/Opti

e cannot fin

roblem fram

ultiple criter

ple equation

e not straight

haracteristic

Pareto-optim

und of this ar

within archi

sues, and so

ced computa

ed by numer

that are in

ch: Generat

on method i

solutions fro

ter 3: Computa

zation

imization

nd solutions

mework. Mos

ria need to be

ns for vario

tforward. So

s of the part

mality are o

rea in more

itectural des

o on – can b

ational tools

rical equatio

many situa

tion + Selec

n this conte

om given set

ational Method

Model
(Soluti

deterministi

st architectur

e considered

ous criteria,

ometimes, si

ticular soluti

ften used fo

detail in the

sign evaluati

be analyzed

s. Neverthele

ons. Aestheti

ations comp

ction Sol

ext is design

ts of conditio

d of Self-organi

l(s)
on)

ically due to

ral design ca

d.

comparison

imple summ

ion relative t

for multi-var

next section

ions – struc

and predict

ess, some cr

ic evaluation

putationally

lution

n search. In

ons.

ization

90

o the

annot

ns of

mation

to the

riable

n.

ctural,

ted to

riteria

ns are

non-

n this

Chapter 3: Computational Method of Self-organization

91

This is basically a reverse operation of the previous method, evaluation, which derives

conditions (or inherent behaviors) from a model (a form). The design search method

provides a model (a form) from certain sets of given conditions. This operation flips the

arrow for the direction of derivation.

In order to computationally implement this method, we typically perform two steps. The

first step is autonomous generation of design instances, and I call this operator a ‘Design

Engine.’ The second step is ‘Selection’ from the instances produced. The system needs to

select the solutions that best satisfy the original input conditions. This selection process

requires its own evaluation methods.

 Since there is no model to evaluate or select at the beginning of the process, the

computational system needs to autonomously produce or find appropriate models to

consider. At this stage, instances provided by the design engine do not necessarily satisfy

input conditions. These models can be all possible permutations of models that loosely

satisfy a framework of the initial conditions. In some more trivial cases, evaluation

methods themselves are analytically well-formulated so that they can search for solutions

deterministically from all possible conditions. In the case of finding a single point in two-

dimensional space, all possible combinations of two real numbers, representing a

Cartesian coordinate system in two-dimensional space, can simply be a search space, or it

can be certain bounded areas in a Cartesian coordinate system.

The above two categories of method – evaluation and search – have a correlation between

them. In the second category, search, in order to select proper solutions, it is necessary to

Chapter 3: Computational Method of Self-organization

92

Initial Conditions
Constraints

Model(s)
(Solution)

Deterministic
Analytical Search

Initial Conditions
Constraints

Model(s)
(Solution)

Non-Deterministic
Heuristic Search

Deterministic Search / Analytical

Non-deterministic Search / Heuristic

Example. TSP
(Traveling Salesman’s problem)

Numbers of cities < 50
analytically solvable

Numbers of cities > 50

use heuristic methods,
GA, etc.

Differential Equations,
Linear Optimizations, etc.

Evolutionary Algorithms,
Simulated Annealing,
Genetic Algorithms, etc.

Shift in Methodology

be able to evaluate different sets of instances. This means that the existence of the first

category, evaluation, is a necessary condition for the second category, generation, to be

able to find solutions. This implies that the second category is built on the validity of the

first, and that the second is a more advanced phase of computational application.

1) Deterministic / Non-deterministic Search

If the search can be reduced to an analytically solvable form such as differential

equations or a linear optimization framework, it can be called deterministic. But many

problems in design searches are non-deterministic: no deterministically solvable

equations can be formulated from initial sets of conditions or constraints. In other cases,

even if we manage to formulate analytically solvable equations for problems, the search

space is simply too large to find the solutions within a reasonable time. In these cases, we

have to rely on heuristic search. Auto-generation of design instances and evaluations of

instances can be iterated generation after generation until the initial requirements are

satisfied. Most of the heuristic methods carry out a search internally based on trial and

error. Common computational methods of heuristic searches are the family of

evolutionary algorithms such as simulated annealing, a genetic algorithm, and so on.

Figures 3.3 – Deterministic and Non-deterministic Search: Shift in Methodology

Chapter 3: Computational Method of Self-organization

93

Model

Model

Model

Model

Model

Model

Model(s)
(Solution)

Model
generation

from previous
selection

Initial
Conditions

Feedback loop

A Model
(Solution)

Satisfies
requirements ?

Model generation
from Initial
conditions. can be
a Random set of
solutions

Ex. Interactive GA
uses human interactions for selection process

Ex. Physical Testing/Measure
If conditions are too complex to simulate, it tests
performance in real physical environments.

Evaluation/
selection

Utility Func.
Fitness

Ex. Genetic Algorithm

Ex. When you cannot use implicit objective functions.

2) Genetic Algorithm (GA)

A genetic algorithm (GA) is a search technique for optimizing or problem-solving. Its

mechanism is based on evolutionary biology, using terms and processes such as genomes,

chromosomes, cross-over, mutation, or selection. The evolution starts from a population

of completely random individuals and happens in generations. In each generation, the

fitness of the whole population is evaluated, multiple individuals are stochastically

selected from the current population (based on their fitness), and those individuals are

modified (mutated or recombined) to form a new population, which becomes current in

the next iteration of the algorithm.

Figure 3.4 – Algorithmic flow chart of GA

Chapter 3: Computational Method of Self-organization

94

Evaluation criteria are applied as fitness to select the better species to be used as a next

generation. In this method, proper evaluation of feedbacks from the previous generations

constantly improves the current generation.

An algorithmic workflow of GA’s represents the concept of this second category, search,

very well. Crossover and mutation functions serve as an instance generator – design

engine – and a fitness function serves as an evaluation criterion – performing selection.

Initialize the population;
Evaluate all members of the population;
While not done{
 Select individual(s) in the population to be parent(s);

Create new individuals by applying the variation operator
(crossover and mutation) to the parents;

 Evaluate the new individuals;
}

The standard algorithmic flow of a (canonical) evolutionary algorithm

3) Traveling Salesman’s Problem (TSP)

Many problems in our day-to-day scenarios do not have a deterministic method for

reaching a clear-cut solution. One of the most famous problems in this category is called

the Traveling Salesman’s Problem (TSP): given a number of cities on a map, to find the

shortest path to visit every city without skipping or duplicating the cities to be visited.

This is a good example representing a methodological shift between deterministic and

non-deterministic search, based on different initial conditions of the search.

In TSP, when the number of cities is less than fifty, it is known that the problem is

reasonably analytically solvable by formulating an algorithm based on linear

programming. However, when the number of cities to visit exceeds fifty, it is known that

Chapter 3: Computational Method of Self-organization

95

very few formulas or analytical methods are effectively available, and the “trial-and-error”

type of heuristic algorithm is a computationally faster way to search for the optimum

solution. Although the solutions from heuristic algorithms are only an approximation,

they will provide solutions close to the optimal with high probabilities. Relying on the

trial-and-error type of approach with the help of computational power guarantees

practical solutions within a reasonable time. The TSP belongs to the class of NP-hard

problems in the theory of computational complexity, and the aforementioned genetic

algorithm is often used as a heuristic optimization technique to solve the TSP.

The above TSP is a typical example that displays the shift (or transition) of choice of

problem-solving methods based on conditions or frameworks of the design problems. In

the case of TSP, there is a threshold value for the number of cities that changes the

effective approach for problem-solving.

I argue that the same discussion can be applied to architectural design problems. Beyond

certain quantities of information for initial conditions or constraints, architectural design

problems become “complex” problems. This fact implies that we need to consider the use

of heuristic methods for computationally solving many problems.

In architecture, one of the main challenges today is the quantity of information and the

level of complexity involved in most building projects. For example, housing projects for

thousands of people have been emerging in urban areas. Furthermore, newly emerging

usage and social demands for buildings have started increasing the complexity and

Chapter 3: Computational Method of Self-organization

96

quantity of building programs, and additionally new technologies allow architects to

conceive unprecedented spatial organizations and hierarchies of building components.

In this context, a design method led by a single intelligence or designer may no longer be

reliable enough to solve complex programmatic requirements. With multiple

environmental, functional, and economic constraints, it is extremely difficult for

designers to find an optimal design solution out of millions of design possibilities by any

existing conventional design methods. Use of heuristic methods such as genetic

algorithms is one possible solution source.

4) Multi-objective Optimization Problems (MOP) and Fitness Measures

As I mentioned earlier, GA’s framework requires a utility function to evaluate the

population of various genomes generated by crossover and mutation processes from prior

generations. This utility (fitness) function can be made up of multiple functions. In

architectural selection processes, most of the cases we have to deal with involve multiple

criteria – environmental issues such as a daylight factor, structural performance, density,

economy, particular geometries a designer intended to achieve, and so on. These criteria

form multiple objective functions, and evaluations derived from each objective are often

in conflict with each other: improvement in one objective may cause detrimental effects

on other criteria. Finding the best solution that will simultaneously satisfy all the criteria

is often very difficult, and we may have to find compromise solutions from trade-offs

among evaluations based on multiple criteria. As background, I will review three major

approaches for multi-objective optimization problems (MOP).

Chapter 3: Computational Method of Self-organization

97

 - Plain Aggregation Methods (weighted-sum)

The simplest way to integrate multiple objectives is to combine objective functions by

creating a weighted sum. This combination forms a linear function of the objectives using

weighting factors based on some knowledge of the problem, and produces a single

measure of merit that represents the overall performance of a solution. In this method, the

weights need to be predefined by doing optimization, and the definitions of weights

require some interpretations of the problems or preference for certain given information.

This approach is heavily dependent on the weighting factors, and slight changes in

weighting factors can lead to drastically different solutions. In architectural projects,

utilities from many different criteria can be expressed by functions of cost – especially

large-scale projects by developers – so that the simple linear summation of all criteria can

be used as a fitness function. It is also known that the result from a single measure of

merit is difficult to interpret since all objectives are mixed together in one figure. This

approach may favor solutions with extreme performance on at least one objective

(dominated solutions) and might not be able to find compromise solutions.

ൌ ݏݏ݁݊ݐ݅ܨ ሺ1ݐ݄݃݅݁ݓሻ כ 2ሻݐ݄݃݅݁ݓ൅ ሺ 1݁ݒ݅ݐ݆ܾܱܿ݁ כ ሻܰݐ݄݃݅݁ݓ൅ … ൅ ሺ 2݁ݒ݅ݐ݆ܾܱܿ݁ כ ܰ݁ݒ݅ݐ݆ܾܱܿ݁

 - Population-based Non-Pareto Approaches

According to Fonseca (1995), this class of methods seeks multiple non-dominated

solutions without directly using Pareto fitness (which will be explained in the next

section). The Vector-Evaluated Genetic Algorithm (VEGA) by Schaffer (1995) is one

example in this category. In the first step, VEGA selects subpopulations of the next

generation from each individual’s objective functions. In the second step, subpopulations

Chapter 3: Computational Method of Self-organization

98

favoring individual fitness from step one are combined and are used as a parent for

crossover and mutation in the same way as for a single-objective GA. Then, the new

population is evaluated by a linear function of the objectives where the weights depend

on the distribution of the population for each generation. VEGA was one of the first

attempts to carry out multi-objective optimization using GA. One shortcoming of this

method is that the population tends to converge to solutions which are superior for one

objective, but poor for others (Konak et al., 2006).

Figure 3.5 – VEGA Diagram

 - Pareto-based Approaches

Pareto-optimality is a concept in economics named after the Italian economist Vilfredo

Pareto (1848–1923). Pareto-optimality exploits the concept of dominated and non-

dominated solutions. A solution is Pareto-optimal if it is not dominated by any other

solutions. Implementation of this concept into multi-objective optimization is done as

follows. A solution dominates another if it is better than the others for at least one

objective function and at least as good on all the others. Using Pareto-optimality as a

Objective_1

Objective_2

Objective_N

Selection

Generation(t)

population

Sub-population 1

Sub-population 2

Sub-population N

Generation(t+1)

population

Crossover &
Mutation

Chapter 3: Computational Method of Self-organization

99

fitness1

fit
n

es
s2 2

1

1

1

1

2

3

fitness1

fit
n

es
s2 2

1

1

1

1

3

5

Goldberg Ranking
ranks based on distance from Pareto-front

Fonseca Ranking
penalizes solutions too close together

fitness measure of an individual in the population, a ranking is created that can be used

for selection.

The first two methods – plain aggregation and non-Pareto – are using an absolute

measure of fitness from a single measure of merit, whereas fitness based on Pareto-

optimality can rank the relationships among other feasible alternatives sampled by GA.

This way, the algorithm can find compromise solutions more readily, and typically

Pareto-based approaches do not require any prior knowledge about preference for

decision-making process. (Weights for the simple aggregation method represent

preferences in the decision-making process (Caldas, 2001; Konak et al., 2006).

Figure 3.6 – Pareto Ranking methods by Goldberg and Fonseca

5) Qualitative Evaluations

There are many cases where one cannot form implicit objective functions for given

problems. Especially in architecture, many evaluations are based not only on quantitative

but also qualitative evaluations. In such cases, there are several strategies to compensate

for the lack of implicit objective functions.

Chapter 3: Computational Method of Self-organization

100

 - Interactive GA

Use of human evaluation as a fitness evaluation in GA’s framework is one strategy when

mathematical fitness functions cannot be formulated for certain utilities. Examples of this

application include evaluations of various artistic designs and forms to fit a user's

aesthetic preferences. Evaluations of many qualitative criteria involve human perception.

For instance, when we consider selection of specific geometry, characteristics such as

symmetry can be straightforwardly implemented by mathematical expression, but

selections based on aesthetic judgments do not always have efficient mathematical

expressions to describe them. For some cases, replacing mathematical equations with

human evaluation is more efficient and effective. In this method, GA’s program has an

interface that allows users to choose schemes during the course of the evolutionary run.

The chosen schemes’ characteristics will be inherited as genetic features for the next

generation. This selection by humans can be done intuitively without any mathematically

explicit descriptions. This process allows having a dialogue between a human and a

computer system to co-evolve designs. Solutions for complex problems derived by

heuristic methods are “better” solutions, but choosing a quantitatively slightly better

solution does not always guarantee the most appealing solution for human perceptions.

In architecture, building schemes that fit the pragmatic and quantitative requirements,

such as zoning, values for lighting, or adjacency conditions, result in different topological

and geometrical variations. Impacts of subtle differences in fitness scores often become

meaningless, when resulting variations in configurations are dramatically different. In

Chapter 3: Computational Method of Self-organization

101

such cases, adaptation of feedback based on human perceptions is more efficient for

finalizing a direction toward specific convergence of design.

 - Feedback from Physical Experiments

Instead of simulating and computationally calculating fitness, getting fitness from an

actual physical model is a quite effective method for some special applications. In the

robotics area, searching for a proper walking motion for a robot can be acquired from an

actual robot’s movement as a fitness value. Simulating a robot’s movements completely

inside the computational environment is often very difficult. Simulation of all physical

dynamics in a real-life environment is extremely cumbersome, and it will never be the

real environment. Direct feedback from real life is the real information we need, and

sometimes this is the faster path. Bongard, Zykov, and Lipson (2006) demonstrated this

logic from their robotics research, but there has been little work done in this area in

architecture. Since evaluations of architectural instances can be highly influenced by

many physical environmental factors, such as lighting, wind forces, heat flows, and so on,

this approach has great potential. In particular, performance-based evaluation of kinetic

architectural components, or operations of buildings related to environmental criteria

such as day lighting and shading can be promising areas of application. I will introduce

my implementation of this logic later in the thesis.

6) Projecting an Arrow from Method 1to Method 2

I mentioned the correlation between ‘Evaluation’ and ‘Search’ methods and their

reversible characteristics. I would like to elaborate this notion in the section below.

Chapter 3: Computational Method of Self-organization

102

 - Bayes’ Theorem

One practical example of the concept of arrow flipping can be seen in computational

applications using Bayes’ theorem. Bayes’ theorem shows the relation between one

conditional probability and its inverse; the probability of a hypothesis, given observed

evidence, and the probability of that evidence, given the hypothesis. In other words,

Bayes’ theorem can mathematically represent the relationship between the conditional

probability of event A given B and the converse conditional probability of B given A. For

example, the probability of a certain diagnosis given a certain probability of symptom

(posterior) can be derived from the probability of the symptom given the diagnosis, the

probability of the diagnosis (prior), and the probability of the symptom (marginal

probability). In many real-life scenarios, there are cases where finding ܲሺܣ|ܤሻ is much

easier than finding ܲሺܤ|ܣሻ, and this technique is widely used for inference of many

events represented by ܲሺܤ|ܣሻ. Many spam filters are designed based on this concept, and

many search engines, such as Google, also use it in order to infer information that users

are looking for from knowledge based on data from users. This is a practically successful

computational application that flips the arrow of derivation.

ܲሺܤ|ܣሻ ൌ
ܲሺܣ|ܤሻܲሺܣሻ

ܲሺܤሻ ሺܲሺܤሻ ൐ 0ሻ … ݉݁ݎ݋݄݁ܶ ᇱݏ݁ݕܽܤ

 - From Pedestrian Simulation to Topology Optimization

Recalling the section on lane formation and pedestrian simulations at the very beginning

of the thesis, I would like to explain the concept of arrow flipping using an example from

that area.

Chapter 3: Computational Method of Self-organization

103

A surprising result concerning pedestrian simulation can be found in evacuation egress

studies using cellular automata by Helbing (2000) and Kirchner, Nishinari, and

Schadschneider (2002). Their simulation models showed that placing a column in front of

the exit slightly shifted from the center (to the left or right) can improve evacuation times

considerably. Under certain conditions, the column does not act as an obstacle. Kirchner

et al. explained that the column subdivides the pedestrian flow and reduces conflicting

situations close to the exit. Normally, a column has a screening effect that forces

pedestrians to take a detour and hence potentially increases evacuation times. Kirchner et

al. demonstrated that there is a non-trivial dependence of the evacuation time on the

column location.

The above experiments by Helbing and Kirchner et al. showed that morphological

characteristics of architectural space can affect occupants’ behaviors. They can

computationally evaluate and predict these behaviors to some extent from the schematic

layout of the room using their simulation tool. This fact implies that, in principle, we can

derive optimally preferable spatial configurations by providing desired behaviors as input

information. If we can somehow iterate through potential spatial configurations, and

evaluate each one of them using a simulation tool, we can reverse-engineer the process

and flip the direction of the derivation arrow in the figure below. Normally, the search

space of solutions is too large, so that there is no way we can use evaluation or simulation

to get all the possible answers. This flipping of the arrow concept has been used in some

engineering applications as a topology optimization technique based on structural forces

or aerodynamics. For example, two software applications by FE-Design GmbH (2010) in

Germany, TOSCA and ABAQUS, are Finite Element Method (FEM)-based structural

Chapter 3: Computational Method of Self-organization

104

optimization software that are used to optimize Formula One racing automobiles’ body

shapes based on computational fluid (aero) dynamics.

Figure 3.7 – An evacuation of a room with one door at the middle of the top wall with an
additional column of size 3 × 3 cells placed in front of it (left). Evacuation time as function of the
friction parameter μ for four room geometries: no column, central column, and column shifted by
one and two lattice sites (right). (Kirchner, Nishinari, and Schadschneider, 2002).

Figure 3.8 — Examples of Topology Optimization: Left from www.optimalsolutions.us.
Middle & right from www.fe-design.de (Fe-Design GmbH, Germany). Original design inputs by
users are optimized based on stresses in members.

 - Flipping the Arrow

The above examples represent ‘evaluation’ as a necessary computational implementation

in order to build a computational system that can ‘search’ for solutions autonomously

from given sets of conditions.

Figure 3.9 shows abstract diagrams that illustrate the concept of arrow flipping. In the

left diagram, the square at the middle influences the flows of particles around the square,

The
image
cannot
be
displayed

Y

Chapter 3: Computational Method of Self-organization

105

Model
(Solution)

EnvironmentEnvironment

Effect

Open-loop Feedback

Effect
Feedback

producing certain resulting particle trajectories (behaviors). Particles in the diagrams can

be abstract representations of any type of active component: representations of

aerodynamic flows, pedestrian agents, and so on. In this case, a certain geometrical or

material property of the square (model) induces certain corresponding particle behaviors.

Conversely, if one knows desired behavioral patterns that need to be induced by a model,

it is natural to search for certain models that can produce the target behaviors. The

methods introduced in this chapter, such as GAs, are some of the techniques that can

potentially be used for such inductive tasks. This concept is abstractly represented in the

right diagram of Figure 3.9a. Note that GAs require an ability to evaluate instances using

a fitness function in order to select or search for certain solutions. In pedestrian

simulations, if one prefers a certain pedestrian movement pattern as a result of certain

models, there are possibilities to inductively search for such models, as this section has

explained.

՜ ݉ݎ݋ܨ ՜ ݏݎ݋݅ݒ݄ܽ݁ܤ ݏݎ݋݅ݒ݄ܽ݁ܤ ݉ݎ݋ܨ

Figure 3.9a – Concept diagram of Flipping the Arrow by the author

Figure 3.9b – Concept diagram of open-loop feedback

Chapter 3: Computational Method of Self-organization

106

Model (t) Model (t + ∆t)Update: algorithm

3. Growth (Updatable) model Space-Time continuum, Time varying system

Feedback from model’s prior state to renew its state

3.1.3 Method 3: Growth and Adaptation

The third category of computational method is ‘Growth and adaptation.’ This method

provides a computational description of gradual growth processes over time. In this

process, a model and its environment have a reciprocal relationship (See Figure 3.9b in

the previous page). A model is first created by conditions and constraints inherent in its

environment. Then the model’s behaviors and growth influence the environment and start

to change it. This change in the environment becomes a new incentive for the model to

update itself to conform to its new environment. This perpetual feedback between the

model and the environment is a continuous loop in time series. This process can be

implemented as a computational model by providing an algorithmic description for the

model to update its state.

In principle, if we can write a general procedure for a model at arbitrary time T to renew

its state at time T+∆t, this model can continue, by updating its state, to grow. This

procedure for updating needs to be conditionally applied, based on the states of the

environment, which implies that the description of ‘self’ is not adequate for the

description of the model in this category. Such a model needs to be equipped with

perceptions of environmental conditions in order to produce its next action. These

sensing and action functions are the essential behavior for the model inside the

spatiotemporal settings.

Chapter 3: Computational Method of Self-organization

107

1) Fibonacci Sequence

The Fibonacci sequence is a simple model where each successive term of the sequence

(after the first two numbers) is defined as the sum of the two preceding terms. Although

this is not an architectural model, the Fibonacci sequence represents the logic of growth

described above very well. Once initial conditions and a recurrence relation that

recursively defines a sequence are given, the Fibonacci sequence can continue

indefinitely. Of course, this type of recurrence relation has to be more complexly and

conditionally applied for many models in the real-life environment. A logistic map is

often used for a population growth model in biology, and is also described by a non-

linear recurrence relation.

݁ܿ݊݁ݑݍ݁ݏ ݅ܿܿܽ݊݋ܾ݅ܨ ؔ 0, 1, 1, 2, 3, 5, 8, 13, ,௡ିଶܨ … ,௡ିଵܨ , ௡ܨ ….
௡ܨ ൌ 0 ሺ݊ ൌ 0ሻ ሺ݅݊݅݊݋݅ݐ݅݀݊݋ܿ ݈ܽ݅ݐሻ
௡ܨ ൌ 1 ሺ݊ ൌ 1ሻ ሺ݅݊݅݊݋݅ݐ݅݀݊݋ܿ ݈ܽ݅ݐሻ
௡ܨ ൌ ௡ିଶܨ ൅ ௡ିଵ ሺ݊ܨ ൐ 1ሻ ሺܽ ݌݄݅ݏ݊݋݅ݐ݈ܽ݁ݎ ݁ܿ݊݁ݎݎݑܿ݁ݎሻ

The two previously discussed methods – evaluation and search – are single-shot events

without any particular relation to time and growth. These methods represent our current

mentality toward design practices: search and evaluation for a particular design solution

is always considered in the static context of the moment, but not in a dynamic context.

This characteristic reveals modern planning methodological tendencies and some

limitations as well. Active adaptation to ever-changing environments has not been a

critical agenda for many building types until quite recently. Demands for such

methodologies have started to increase, as the complexity and quantities of architectural

programs in contemporary society increase.

Chapter 3: Computational Method of Self-organization

108

In theory, without having any complete big pictures of final outcomes, systems can

continue to grow and maintain globally functional states by using the spatiotemporal

procedures. In this case, design is not a convergence toward any predefined goal; instead,

solely spatiotemporal procedures can lead the growth in appropriate directions based on

sensing from the current conditions without imposing specific pre-defined design

templates.

2) Evolutionary Game Theory

I would also like to note that evolutionary game theory can be another potential

computational technique for describing dynamics of growth and negotiations among

various multiple building types.

In the 1970s the prominent biologists John Maynard Smith and George R. Price applied

game theory to their field. Maynard Smith introduced the notion of Evolutionarily Stable

Strategy (ESS). ESS uses a payoff matrix in game theory as a frequency-dependent

fitness among the different species or strategies. This notion had never existed in the

traditional game theory centered on the concept of Nash equilibrium. The traditional

game theory was mostly based on the premise that all the players play completely

rationally, whereas evolutionary game theory provided an alternative method to explain

the long-run outcomes which arise from the interactions of less than fully rational agents,

yet yield optimality over time.

Evolutionary game theory was the result of a unique interpretation of game theory by

biologists and added a new repertoire for analyzing advantageous mutations and

Chapter 3: Computational Method of Self-organization

109

evolutionary stable strategies (ESS) among groups (populations) over time. The

evolutionary game theory considers ‘repeatedly played games’ and introduces the notions

of mutation and selection, whereas traditional game theory is mostly concerned with

single or discrete numbers of games. Individuals interact randomly with others based on

payoff, which is interpreted as fitness. Successful results of games lead to greater

reproduction of those strategies in proportion to others among the population. As a

common method to analyze evolutionary dynamics in games, replicator equations are

used to study infinite populations in continuous time. Nowak (2006) introduced various

model applications of the theory, such as mutation of cancer cells and the AIDS virus,

development of the grammatical structure of languages, and so on. He also introduced a

spatial application integrating evolutionary game theory and cellular automata.

The spatial extension of evolutionary dynamics has been studied by Nowak and May

(Nowak and May, 1992; Nowak, 2006) using a local interaction model in which each

individual plays a cooperator – defector game among its neighbors inside a square lattice

space. These spatial models provided a different interpretation of evolutionary dynamics

from those using the replicator dynamics and shed light on potential future applications in

models for more architectural purposes.

Figure 3.10 – Spatial Games (Nowak, 2006).

Chapter 3: Computational Method of Self-organization

110

3) Examples:

I list the following three examples of this method in order of level of application.

A). Conventional Renovation Scenarios

Renovation and addition to existing structures is the most common and the most

primitive scenario of application of this logic in architecture. In many cases, these

transformations are not planned at the time of the initial construction of structures and are

triggered by unanticipated changes in environments, occupancy, and population density

in later periods. Normally, these alterations are executed at a certain discrete time step at

once, and there is no continuity between successive transformations. Brand shows

various transformations of buildings over time in his book How Buildings Learn (Brand,

1994). These examples belong to the aforementioned ‘closed-planning’ category (Isozaki,

1967; 1972). Discontinuity in growth patterns and the lack of bidirectional spontaneous

feedback between buildings and environments characterize this class.

Figure 3.11 – The Mrs. Robert Louis Stevenson-Lloyd Osborne House in San Francisco.
Example of building growth by renovations and additions. (Brand, 1994)

B). Modular System (Kit-of-Parts)

This example belongs to the ‘open-planning’ category. All the future transformations,

reconfigurations, and replacements are planned at the initial stage of the construction;

Chapter 3: Computational Method of Self-organization

111

however, these changes are pre-defined or constrained by the system’s own physical

limitations. Metabolists’ buildings’ infrastructures allowed some reconfiguration patterns

of units, yet the growth was limited within the extent of the system’s own capabilities. In

general, modular systems consist of modular building blocks and infrastructural arteries

that can support and combine them. At this level of application, these subunit blocks do

not possess active behavior and sensing capabilities able to achieve un-programmed or

unplanned configurations.

C). Self-organizing Growth

This is a more advanced application of the growth logic. The subunit is designed flexibly

and universally enough so that aggregations of the subunits can adapt to many

unpredictable scenarios. In order to achieve this level of flexibility in global structure, the

subunits need to have some means of active mobility by having actuation devices within

themselves or by relying on other devices for transportation. Collective construction by

termites is one extreme example of such structures that do not require any pre-defined

configurations. Procedural instructions alone can continue the construction processes. We

do not know the exact logic behind them, but the models by Theraulaz and Bonabeau

(1995a; 1995b) show that similar constructions can be obtained from mere locally

embedded rules. Swarm robots or reconfigurable robots created by computer scientist

groups also belong to this category because they have distributedly controlled subunits

with sensing and actuation capabilities. In the following section, computational

interpretations of these dynamic mechanisms are introduced in detail through more

precise definitions of the principles and two application examples that follow.

Chapter 3: Computational Method of Self-organization

112

Figure 3.12 – From Modular system, to Self-reconfigurable system, to Self-organizing system

Chapter 3: Computational Method of Self-organization

113

3.2 Self-organizing Computation

3.2.1 Self-organizing Computation

Self-organizing computation is a computational approach that brings out the strengths of

the dynamic mechanisms of self-organizing systems: structures appear at the global level

of a system from interactions among its lower-level components. In order to

computationally implement the mechanisms, the system’s constituent units (subunits) and

the rules that define their interactions (behaviors) need to be computationally described.

These interactions are executed on the basis of local information rather than being a

property imposed by knowledge external to the system. The system expects emergence of

global-scale spatial structures from the locally defined interactions of its own components.

In pedestrian simulations, these subunits can be pedestrian agents with certain movement

behaviors, and interactions of these can produce globally defined formations such as

lanes, which will be reviewed in the next section.

3.2.2 Key Attributes of Self-organization

Self-organization is generally known to rely on a few basic attributes. For example,

positive feedback, negative feedback, amplification of fluctuations, and multiple

interactions are four ingredients listed by Bonabeau et al. (1999). Therefore,

computational implementation of these attributes is essential for the development of self-

organizing computation systems.

Chapter 3: Computational Method of Self-organization

114

Feedback loop is basic behavior that promote emergence of structures. Feedback occurs

when the response to a stimulus has a certain effect on the original stimulus. Generally,

there are positive and negative feedbacks. Positive feedback means a response enhances

the original stimulus, whereas negative feedback means a response diminishes the

original stimulus. Together they act as an amplifier (self-reinforcer) and a regulator inside

a system. These are similar to the concept of activator and inhibitor from the Turing

patterns that are reviewed in the previous chapter. Stable collective patterns within a

system are maintained when positive and negative feedbacks counterbalance each other.

Randomness or amplification of fluctuations is one of the essential attributes of self-

organization. Randomness plays a key role in self-organizing systems, enabling them to

discover new solutions. The ant foraging phenomenon illustrates this notion well. Ant

foragers sometimes lose their trails by error, but this error gives them opportunities to

find unexploited food sources, and to recruit others to these new food sources (Bonabeau

et al., 1999). If search spaces for problems are extremely large, and if it is not feasible to

check every possible solution, randomness helps systems to distribute seeds for searches

and to promote growth toward unexploited directions. This implementation of

fluctuations also prevents systems from stagnating at local optima. Although such a

phenomenon may seem inefficient, implementation of randomness or fluctuations can be

crucial where no deterministically defined problem-solving means are available.

However, randomness is not a necessary condition for emergence of structures. In some

systems, without relying on any stochastic behaviors and interactions of systems’

constituent units, some global structures can be deterministically gained, and these

Chapter 3: Computational Method of Self-organization

115

systems can be still considered as self-organizing systems by satisfying the other

attributes, such as open feedback and multiple interactions. For example, in the second

example in the following section, see circle packing using a bubble meshing method.

Besides initially randomly defined conditions of circles, simulated physical interactions

of circles do not have any random components – yet the example’s derivation of global

configurations can be interpreted as a self-organizing behavior.

Multiple interactions are another key attribute that self-organization relies on. Although

ordered structures can be formed by a single individual in certain cases, self-

organizational systems generally rely on possessing a sufficient density of mutually

tolerant individuals. Interactions of individuals cause results of their own activities that

may influence others’ activities in a system. Such correlations and interdependencies

among constituent composing units of self-organizing systems are realized by the

multiple interactions.

3.2.3 Key Properties of Self-organized Phenomena

Phenomena resulting from self-organizing systems usually show the following key

characteristics. One characteristic is that the resulting emergent spatiotemporal structure

is created from an initially homogenous medium. This means that the constituent

components of a system initially possess common characteristics or similar behaviors to

each other, although they may differentiate and diverge gradually during the course of

interactions among them.

Chapter 3: Computational Method of Self-organization

116

Another characteristic for the emergent spatiotemporal structure is the possible

coexistence of several stable states. This is also called multistability (Bonabeau et al.,

1999). Due to the reliance on amplification of random deviations in self-organizing

systems, these deviations may cause further deviations over the course of processes and

possibly produce convergences to several different stable states. Randomly produced

initial conditions thus may lead the system to acquire different states.

These states can further differentiate depending on some parameters, and some will

become stable states. These parameter-dependent changes in behaviors of self-organizing

systems are often dramatic, and the existence of these bifurcations is one other key

property of self-organization. These changes are not constant and gradual changes that

can be understood as a linear summation of the individual of successive inputs. These

changes often are observed abruptly when internal properties or a system’s parameters

reach certain threshold values, and the system starts to display qualitatively new

properties. This underlying property is often referred as the “nonlinearity” of self-

organizing systems.

3.2.4 Emergent Formations: Examples of Self-organizing Computation

The following section presents two relatively simple yet explicit examples of self-

organizing computation in order to clarify the preceding more conceptual and abstract

discussions about self-organization. Close packing of circles is one typical case where

simulation using dynamics excels the performance of any analytical means, and it can be

implemented by relatively straightforward codes. Simple, locally implemented physical

Chapter 3: Computational Method of Self-organization

117

motions of bubbles – pushing and squeezing against each other – can eventually lead a

group of bubbles to form a globally cohesive structure. Lane-formation using agent-based

pedestrian simulation is another clear example that represents the concept of self-

organization. Groups of pedestrians can find efficient walking formations solely from

locally embedded individual behaviors without imposing any global geometry. Circle

packing and lane formation are two simple examples that exhibit principles of self-

organizing computation.

3.2.5 Lane Formation

“Lane formation” is a fascinating emergent phenomenon we can observe from simple

agent-based pedestrian simulation. In crowds of oppositely walking pedestrians, the

gradual formation of varying lanes of pedestrians moving in the same directions are

observed. This is an empirically observed phenomenon and has been recorded in many

real-life locations such as crowded pedestrian streets crossing in the city of Tokyo

(Figure 3.13). The emergence of this spatiotemporal pattern is a result of non-linear

interactions among pedestrians.

Figure 3.13 – Lane formations observed at an intersection in Tokyo, Japan (Katoh, 1980).

Chapter 3: Computational Method of Self-organization

118

Each pedestrian’s embedded behavior is simply avoiding others blocking his or her way

in local neighborhood conditions, yet the global collective behavior that emerges from

interactions of simple behaviors shows self-organized characteristics of a crowd.

Emerging patterns of lanes are not externally planned, prescribed, or organized, either in

computer simulations or in real-life scenarios. Interactions of only locally implemented

individual behaviors gradually form globally functional and cohesive organizational

structures. According to Helbing (2001), the reason for lane formation is the consequent

decrease in the frequency of necessary declaration and avoidance maneuvers, which

increases the efficiency of the pedestrian flow. The pedestrians are obviously minimizing

the collisions among them to reach more efficient steady states by gradually forming

lanes by following each other. Also according to Helbing (2001), lane formation’s

collective pattern of motion displays symmetry-breaking phenomena. The model has

absolutely no bias for the probability of pedestrians’ left turns or right turns for avoidance,

and they are completely symmetrically defined. (This applies to the simulation by the

author as well.)

Figure 3.14 – Pedestrian simulation by the author and emergence of lanes.

Chapter 3: Computational Method of Self-organization

119

The varying formations of lanes are highly influenced by the population density of

pedestrians, width of the street, and field of vision implemented in each pedestrian agent.

(See author’s results from the experiments section below.) The basic behaviors of each

pedestrian are fairly simple – they all want to avoid the people walking toward them and

not to slow down their walking pace unnecessarily. The following behaviors have been

observed in many past studies relating to the density conditions of real pedestrian

movements (Nihon-Kenchiku-Gakkai, 1994), and the simulation by the author is based

on the implementation of these behaviors. (See section below for a detailed description of

the experiments.)

• Pedestrians pay attention to their immediate neighbors and avoid collisions with
them. They adjust their walking speed based on the density condition around them.

• When density is low, pedestrians tend to keep a certain distance between
themselves and the other pedestrians ahead of and behind them. Then they pay
attention to the distances to their left and right.

• When density is high, pedestrians tend to reduce the distance ahead of them. Thus,
spacing among them is reduced.

• Pedestrians survey the flow around them, and follow the direction where more
people are moving in the same direction as they are heading. (Density here refers
to the density in terms of the local conditions around the pedestrian, not the
overall density.)

Figure 3.15 – Simulation results from various different parameter settings by the author.

Chapter 3: Computational Method of Self-organization

120

The last characteristic introduces the idea of the visual ability of the modeled pedestrians.

This visual ability allows the modeled human to detect the motion of the others around

itself, and make proper judgments for its next movement. The extent of this vision has an

inversely proportional relationship with the density conditions around the modeled

human. When the person is surrounded by many people, he or she possesses a smaller

field of vision, so his or her decision will be based more on local, immediately

neighboring conditions. When the density is low, the person has more ability to survey

the movement on a macro scale and consequently to recognize groups of people moving

toward the same direction in a larger area. This behavior, and the algorithm that I have

interpreted and implemented in this exercise, are similar to those of flocking behaviors.

Figure 3.16 – Pedestrian movement rules for simulation program by the author.

Chapter 3: Computational Method of Self-organization

121

1) Pedestrian Crossing Simulation by the Author

The following is the detailed description of my algorithmic interpretation and results of

pedestrian behaviors at the crossings. My interpretation may not necessarily be alike in

terms of algorithms, compared to studies by others. The aim of this exercise was to

reinterpret known human behaviors under certain circumstances in the simulation model

by the use of algorithms.

Based on various populations (density), conditions of the pedestrians’ vision (fields of

view), and all the rules that applied, I have recorded the emergence of lane formations of

different sizes in width, numbers, and distances between them. In general, the overall

density needs to be above certain threshold values to observe lane formations. In this

exercise, I used a 30 x 30 grid of hypothetically 65 to 80 cm, which is about the average

width of a normal person’s length of stride. In a population below 100 (overall density <

0.55 people-per-m2) I do not observe much lane formation since the pedestrians have

almost no need to avoid others. In an overall density above 0.82 people-per-m2, I started

to recognize some clusters of pedestrians walking in the same directions. There is an

issue of what precisely defines “lane.” However, the main aim of this exercise is to

understand the concept of this phenomenon, so whenever I observed more than two lanes

of pedestrians flowing in the same directions, I decided to interpret them as lane

formation. Next, I fixed the population at 450 (density close to 50%) and observed the

difference with the various fields of vision (2.5m, 5m, 7.5m) and rules (2nd order rules On

or Off) that applied (Figure 3.4). The rules that applied in the pedestrians’ behaviors and

algorithms have an order of applicability starting from their immediate neighboring

Chapter 3: Computational Method of Self-organization

122

conditions (Moore neighborhood) to their larger surroundings. Some rules (rule order 2

and 3) are turned on and off based on each pedestrian’s local density conditions (Figure

3.16). I found lane formation can be observed with or without additional rules, but they

would affect the sizes and numbers of lanes. In this experiment, supplying more rules in

addition to the basic rules, agents gain better capabilities to sense the surrounding

conditions, and they form more efficient lane flows. Using more rules gives the agents

behaviors more responsive to the different conditions. In conclusion, the more sensing

capability pedestrians have, the wider lane widths become. Thus, the numbers of lanes

also decrease, and eventually become two lanes – up and down directions.

Figure 3.17 – Emergence of pin-wheel formation from simulation of pedestrian intersection.

Figure 3.18 –Two possible directions for pin-wheel formations.

Chapter 3: Computational Method of Self-organization

123

2) Pedestrian Intersection

I tested the same agent’s behaviors on a scramble intersection (i.e., an intersection with

diagonal crosswalks), often seen in urban settings in the Tokyo area. In this case, four

groups of pedestrians are walking in different directions toward the intersection. The

difference between the previous simple single-lane case and this intersecting condition is

that there is no way to completely avoid all the collisions between the agents’ groups

moving in different directions. This time, pedestrians formed a pin-wheel-shaped

formation instead of lanes. This is considered to be self-organizing collective behavior to

minimize collision among them. Complete avoidance of collisions is not possible. Instead,

the pin-wheel formation is their natural effort to minimize the points of collision down to

four areas. Figure 3.18 shows two possible orientations for four lanes’ flow directions.

From the diagrams, it is comparatively clear that internally steadier formations evolve to

balance the physics of flows. The above two exercises only implement locally defined

individual behaviors, yet the resultant global behavior indicates self-organization among

them.

Figure 3.19 – Simulation of Scramble intersection in Shibuya, Tokyo, Japan, using motion
capture files for pedestrian movements inside urban modeling VR software.

Chapter 3: Computational Method of Self-organization

124

3.2.6 Circle Packing

Another more intuitive example involves packing. When one is packing a large trunk or

storage space with a number of boxes of various sizes, there is essentially no

deterministic way to find the best packing solution inside the given space. However, by

doing some trials, one will find it better to start with the boxes with larger sizes. Then, to

fill the gaps with smaller boxes will yield the better solutions faster. This method does

not give us a perfect packing solution, but guarantees decent optimal solutions faster.

Figure 3.20 – Circle packing using a Bubble Mesh Method (Simulation by the author)

Chapter 3: Computational Method of Self-organization

125

In mathematics, circle packing problems deal with arrangements of non-overlapping

circles that fill a space. Close-packing of identical circles has been studied for many years,

and some analytical solutions have been found for certain special conditions (Sugihara,

2006). However, even for numbers of less than a hundred identical circles, searching for

the most compact packing of equal circles within a circle has not been resolved or is not

known (Reis, 1975) – not to mention that the most efficient way to pack different-sized

circles within a circle is not known at all. So, usually, we seek for optimized solutions,

instead of the best solution, using heuristic techniques. This problem’s primary condition,

non-overlapping of circles, is a non-linear problem, so it is not easy to solve. Even using

the heuristic optimization techniques, it requires extended time for calculations.

Simulation is another completely different approach to solving this problem. We can

consider physical disks inside a larger circular container that can push and pull each other

until they find their stable configurations. Dynamic behaviors of disks can be

computationally simulated using a bubble meshing method. Bubble meshing is a

technique used for Finite Element Method (FEM) to obtain uniform subdivision of finite

elements from a given entire domain. The method uses close packing of bubbles for the

optimization of mesh node locations. Two adjacent bubbles literally push and pull each

other using a repulsive or attractive force similar to an intermolecular van der Waals

force. A globally stable configuration of tightly packed bubbles is determined by solving

the equation of motion.

Each circle has simple behaviors – push and pull – and the interactions of circles with

locally implemented behaviors eventually produce globally functional solutions. This

Chapter 3: Computational Method of Self-organization

126

gradual, but emergent formation process is not externally imposed by any information.

Aggregation of simple entities with active behaviors can produce globally meaningful

results through local interactions.

“Build a system composed with active primary entities, and let them find design solutions

that satisfy their current environmental conditions” is not a common attitude toward

design. However, we are starting to see these examples from many natural systems’

behaviors, and some human-implemented systems models. These are new opportunities

for us to consider new types of design decision-making systems that can be more

adaptive to changes. In other words, instead of providing a concrete picture of design as a

final product, we might be able to provide simply a process or logic of formation that can

lead to a design that conforms to the better solution in a spatiotemporal manner. In this

thesis, I would like to investigate the potentials of emergent methods in our design

activities.

Figure 3.21 – Bubble mesh method: “push” and “pull” behaviors for circles.

Chapter 3: Computational Method of Self-organization

127

Figure 3.22 – Process of Bubble Mesh Method: Close packing of 400 different-sized circles.
(Simulation by the author)

t = 0.1 t = 0.2 t = 0.3 t = 0.4

t = 0.1 t = 0.2 t = 0.3 t = 0.4

t = 0.5 t = 0.6 t = 0.7 t = 0.8

t = 0.9 t = 1.2 t = 1.6 t = 2.4

Chapter 3: Computational Method of Self-organization

128

3.3 Concluding Note: The Trans-dimensional Topology Concept

I have explained the evolution of three stages of computational methods for design,

starting from evaluation methods, which can only evaluate given solutions, and moving

to design search or generation methods that can search and select solutions from given

conditions using the evaluation methods. In case of some algorithmic methods such as

GA’s, well-defined evaluation methods such as fitness functions are necessary for their

mechanisms to perform as design search methods, and evaluation and design search

methods are in a dependency relationship.

The second and the third categories of computational methods – design search and

growth + adaptation – are rather independent of each other. Self-organizing computation

has been introduced as one approach to implement the growth + adaptation method.

Self-organizing computation normally presents one result of spatiotemporal structure at a

time, and there are some possibilities that every result may differ due to its characteristics

– randomness and amplitude of fluctuations. In order to search out optimal results from

self-organizing computation, these different results may need to be evaluated by another

selection sequence. Populations of different growth patterns gained from self-organizing

computation can be used for initial inputs for design search methods to find optimal

growth patterns. Thus, the second and the third methods can be used in tandem.

The third category – growth + adaptation methods – are equipped with a feedback

system between the design context and objects being designed. This co-evolutionary

process can only be represented through space + time four-dimensional topology space;

Chapter 3: Computational Method of Self-organization

129

however, in my opinion, four dimensions are not enough for successful implementations

of this model. Trans-dimensional topology is an alternative conceptual viewpoint that I

propose as a concluding note for this chapter. In order for us to think of design in a

spatiotemporal manner, design thinking inside the trans-dimensional topology world is

suggested. We tend to think only in three-dimensional spaces as our design problem, and

currently available technologies expect us to frame a solution within a static time frame.

Trans-dimensional topology space is a five-dimensional hyperspace that contains three

dimensions for a Cartesian coordinate system, one dimension for a time axis, and one

additional dimensional axis for all possible alternative solutions. This final axis contains

all possible sequences of designs in time series. Here, we are dealing with a type or

category of designs that can recurrently alter their morphologies in response to external

environmental changes. I propose systems thinking that resides inside the parallel worlds

of alternative schemes. Some schemes can grow into different schemes and branch out to

form topologically continuous yet spatially separated schemes. Some branches in trans-

dimensional topology space may merge back again during the course of evolutionary

growth in the four-dimensional world of space + time.

Searching for solutions within this space is overwhelmingly exhausting work not only for

humans but also for computers, as it requires extensive parallel thinking. Under this

condition, conventional analytical means are likely to be in vain, and instead, bottom-up

design approaches become potentially preferable. As I have reviewed in this chapter,

heuristic approaches seen in close packing of circles and lane formations by pedestrian

agents are good examples that represent shifts in methodology from analytical to heuristic.

Chapter 3: Computational Method of Self-organization

130

In the next few chapters, I would like to explain several architectural applications of this

logic.

Chapter 4: Experiments in Evaluation and Selection

131

Chapter 4

Experiments in

Evaluation and Selection
(Design Search)

Introduction

In next two chapters, implementations of the aforementioned three stages of

computational methods into various design problem frameworks are introduced. The first

example uses a technique similar to that we reviewed from a bubble meshing method

using dynamics of physics. This example falls into the first category of computational

method – evaluation; however, later, this framework will allow us to actively find

optimized solutions. Globally stable structures, such as catenary shapes, can be

progressively gained through locally defined behaviors of particle masses based on

explicit time stepping.

Chapter 4: Experiments in Evaluation and Selection

132

The second example falls into the second category of computational method – search.

This example uses the principle of evolutionary algorithms to search the new geometrical

structures using techniques from turtle geometry and L-system. An architectural

implementation using various different fitness measures is introduced.

4.1 Implementing Physical Reactions to CAD System

In this section, I would like to introduce a new kind of CAD system that allows users to

intuitively see the physical forces and their reactions acting on the structures. Use of

dynamically animated structural deformation informs balances of structures on the

schematic level while users are modeling them in a real-time manner. This system

resolves all forces acting on a structure into axial-forces in order to approximate and

visualize structural behaviors using Finite Difference Method (Euler Method). In addition

to this analytical capability for static structures, the software allows users to design

kinetic components. Users can assign actuators that can vary their lengths in a certain

frequency. Kinetic architecture can be generated from this platform. Explanation of this

implementation in detail follows in the next section.

This system has a dynamical mechanism that can deliver globally stable structures such

as catenary shapes through locally defined interactions of physical forces at particle

masses. Although the system is primarily designed for evaluating structural performance,

the system’s ability to develop macroscopic spatiotemporal structures out of processes

and interactions defined at the microscopic level exhibits the typical feature of self-

organizing systems. Due to this characteristic of the form-finding process, this method

was included in this chapter. In this case, the system’s behaviors are rather deterministic,

co

re

4

In

th

en

re

m

ob

F
z=

ompared to

ely on any ty

4.1.1 Elast

n order to si

hree-dimensi

nvironment,

esolutions of

more accurat

bjects – that

Us
2D
-
-
-

3D
-
-
-

Figure 4.1 – 2
=3 (right). U

several othe

ype of rando

tic Spring

imulate dyn

ional solid o

 surfaces o

f this subdiv

e and precis

t can be obta

ser Interface c
D Elastic Spri

Set x-y dim
Set number
Generate 2D

D Elastic Spri
Set x-y-z di
Set number
Generate 3D

2D SpringMa
ser Interface

er systems t

mness or am

Mass Obj

namic reactio

objects with

or solids ar

vision can b

se the details

ained.

controls the fo
ing Mass (Sur

mensions.
rs of divisions
D Spring Ma

ing Mass (Sol
imensions.
rs of divisions
D Spring Ma

ass w/ 10x10
e of the progr

Cha

hat follow i

mplification o

ject:

ons and mov

h reasonable

re subdivide

e controlled

s and behav

following para
rface Membra

s for x & y di
ss object

lid Object)

s for x, y, z di
ss object

 divisions (le
ram (avobe).

apter 4: Exper

in this thesis

of fluctuatio

vements of

 calculation

ed into dis

d by users. T

iors – that i

ameters.
ane, Cloth)

irections

irections

eft). 3D Sprin
.

riments in Eval

s, since the

ons.

two-dimens

n speed of th

screte cells

The finer the

s, closer to t

ngMass w/ d

luation and Sel

method doe

ional surfac

he computat

or voxels.

e subdivision

the original

divisions x=5,

lection

133

es not

ces or

tional

The

n, the

solid

, y=3,

Chapter 4: Experiments in Evaluation and Selection

134

This is a well-accepted approach in continuum mechanics which assumes that the matter

in the body is continuously distributed and fills the entire region of space it occupies. In

continuum mechanics, certain phenomena can be modeled by continually subdividing a

body into infinitesimal elements with properties that are those of the bulk (original)

material. In the case of this experiment, surfaces or solids are replaced by interconnected

particle masses using the vertices of subdivision, and elastic properties of materials under

consideration for the body are approximated by the interconnected network of virtual

springs with appropriate values for spring constants. The original material’s Young’s

modulus of elasticity is represented by these interconnected springs with certain force

constants behaving according to Hooke’s Law. This process turns the complex forces

acting inside the continuously dense original objects into axial forces and reduces

computational time. In the case of a two-dimensional surface, a result of this process

becomes the simulation of cloth or surface membranes. Interconnected springs at each

subdivision require diagonal members as a shear spring to properly simulate the physical

characteristics of cloth. In the case of a solid object, this process will produce a three-

dimensional truss structure using the original object’s shape outline.

Chapter 4: Experiments in Evaluation and Selection

135

Target Object (Particle)

Structural
Spring:

Shear Spring:

 Angle0 = 180°

Hinge Spring:

M
 g

k-value
w/ Damping

Friction

 Drag

Repulsion

Elastic collision

ParticleStates = { Free, Fixed }
‘S’ Key to change states.

Forces:

Concept of Elastic Spring Mass System

- Elastic Object Class Structure

Elastic E = new Elastic();
{

Target Particle[16]
Spring Struct[32]
Spring Shear[18]
Spring Hinge[12] (only for 2D)

 (Invisible hinges that try to maintain initial angles)
}

- Acting Forces

K-value: Spring constants for Structure,
 Shear, and Hinge springs (3000kg/m, etc.)
Damping: damping coefficient for springs
Mass: m = Mass for Particles
Gravity: g = 9.8kg/m²
Drag force: (relative to particles’ velocities)
Repel factor: Coefficient among particles
Elastic collision const: (between floor & particles)
Friction: (between floor & particles)

Figure 4.2 – Various forces acting on the 2D structure.

Chapter 4: Experiments in Evaluation and Selection

136

Figure 4.3 – Model Examples using Elastic Spring Mass System

Figure 4.4 – Catenary Shapes can be gained from the use of the software. Geometries of
Stressed-skin Membrane structure and thin shell structures can be derived intuitively at the
schematic level.

Chapter 4: Experiments in Evaluation and Selection

137

4.1.2 Finite Difference Method: Explicit Time Stepping

This technique allows representation of animated structural deformations by stepping

through the displacements of particles in delta-t, finite time segments.

Forces on springs are derived from Hooke’s Law.

ሻݐሺܨ ൌ כ ݇ ሻݓܽܮ ݏ’݁݇݋݋ܪሻ ሺݐሺݔ

From Newton’s Law of Inertia, the time derivative of the momentum is gained.

ሻݐሺܨ ൌ כ ܯ ሻݐሺܣ

ሻݐሺܣ ൌ
ܸሺݐ ൅ –ሻݐ݀ ܸሺݐሻ

ݐ݀
 ሺ݀ݐ ՜ 0ሻ

ܸሺݐሻ ൌ
ݐሺݔ ൅ ሻݐ݀ െ ሻݐሺݔ

ݐ݀ ሺ݀ݐ ՜ 0ሻ

Using 1st and 2nd Taylor polynomials, calculate and update current positions of particles.

ሻݐሺܣ ൌ
ሻݐሺܨ

ܯ

ܸሺݐ ൅ ሻݐ݀ ൌ ܸሺݐሻ ൅ ሻݐሺܣ כ ݐ݀
ݐሺݔ ൅ ሻݐ݀ ൌ ሻݐሺݔ ൅ ܸሺݐሻ כ ݐ݀

This method approximates the trajectories of movements of particle masses. The

algorithm uses explicit finite time steps, delta-t, to move each mass forward by

calculating a displacement from the above equations. (See code sequence below.) The

algorithm iterates through this calculation for displacement for each mass through all

springs so that the displacement at one location is translated through all other locations of

an object, and eventually, it describes motion of the entire structure.

Other primary forces under consideration are friction between a floor and particle masses,

damping coefficient for springs, drag force relative to particles’ velocities, repel factor

(Coefficient among particles), and gravity (9.8kg/m²). Damping forces are considered,

because otherwise springs never slow down their oscillations. The drag forces between

Chapter 4: Experiments in Evaluation and Selection

138

particles are added in order to avoid overlapping of surfaces or solids. These forces are

applied when calculating forces on each particle. All forces from adjacent particle masses

are translated and added to the forces affecting the particle mass under the calculation.

- Calculate Forces on each Particle (Iterate through all Springs)

for(i = 0; i < numSPRING; i++)
{

vDir1 = Vector3.dirc(particle[np1].vPos,
particle[np2].vPos);
len = Vector3.dist(particle[np1].vPos,
particle[np2].vPos);
vFF = (structK*(len-
structS[i].length0))*vDir1;
particle[np1].vForce += vFF;
particle[np2].vForce -= vFF;

}

- Finite Difference Method (Explicit Time Stepping)

for(i = 0; i < numParticle; i++)
{
 if(particle[i].flagFixed == true) continue;

 // Acceleration
 particle[i].vAccel = particle[i].vForce / massParticle;
 // Velocity
 particle[i].vVelocity += particle[i].vAccel * dt;
 // Displacement
 particle[i].vPos += particle[i].vVelocity * dt;
}

4.1.3 Stress Display: Animated Dynamic Structural Deformation

The software can dynamically display real-time stresses acting on each particle node.

Axial stresses at each node are rendered with graduation of colors: Red being high stress

to blue being low stress. The color range of stress level can be adjusted by a stress gauge.

This feature can intuitively inform designers about areas of stress concentrations in a

real-time manner. Later in the second and third sections of this chapter, this same

functionality is used for visually evaluating structural performances of design schemes. In

the third section, housing layouts created by DLA (Diffusion-Limited Aggregation)

Particle [np1]

Particle [np2]

VFF

Length0

al

w

th

Pr
St

H
(D
al
on
(t

In
st
(b

F
ea

lgorithm are

within the th

his feature is

ress ‘space’-k
tress Gauge.

Housing layou
Diffusion-Lim
lgorithm. For
n Axial-force
top-right)

nform designe
tress concentr
bottom-right)

Figure 4.5 – S
ach particle d

e tested with

ree-dimensio

s used as one

key for Stress

ut created by D
mited Aggrega
rces are calcul
es on 3D-truss

ers intuitively
rations in real
.

Software can
divided by n

h this metho

onal truss st

e of the fitne

s Display for

DLA
ation)
lated based
s structure.

y of areas of
l time.

n dynamicall
numbers of pa

Cha

od, and forc

tructure. (Se

ess functions

Solid objects

ly display re
articles. Red

apter 4: Exper

ces are calcu

ee later sect

s for the evol

s. Range of s

eal-time stres
d means high

riments in Eval

ulated based

ions.) In the

lutionary alg

tress level ca

ss level base
stresses to b

luation and Sel

d on axial-f

e second sec

gorithm.

an be adjusted

d on the stre
blue means lo

lection

139

forces

ction,

d by a

ess at
ow.

Chapter 4: Experiments in Evaluation and Selection

140

Figure 4.6a – Animated Deformation Sequence_1

Figure 4.6b -- Animated Deformation Sequence_2

Chapter 4: Experiments in Evaluation and Selection

141

4.1.4 Kinetic Objects

Kinetic characteristics of various objects can be implemented in this program. This

program allows users to replace conventional spring members with oscillating pistons.

Users can also add new piston members to existing structures, and set a length of member,

amplitude of actuation, a period of gait cycle, and a phase of oscillation. This feature

allows users to actively construct members for kinetic architecture. For example, a

variable-length truss system or tensegrity system can be designed in this environment.

Orchestrating kinetic members’ gait cycles and amplitudes has become a challenge as

synchronization of their movements as a whole becomes a complex issue. New kinds of

design methods are expected for the design of active objects.

- Code Implementation of Piston:

//PISTON
Form1.time=(Form1.time + dt/10)%(2*Math.PI);
if(!pist.Contains(i))
 vFF=(structK*(len-structS[i].length0))*vDir;
else
 vFF=(pistonK*(len -structS[i].length0/3*Math.Cos(Form1.time

+ i* Math.PI/(numParticle+1))-structS[i].length0/3*2))*vDir;

- Mathematical Implementation of Piston:

ܮ ൌ׷ ൅ ݋ܮ ܣ כ ݏ݋ܿ ൬
ݐ
ߣ

൅ ߮൰

ܮ ؔ ݄ݐ݈݃݊݁ ݐ݊݁ݎݎݑܿ
݋ܮ ؔ ݐ݊݁݉݃݁ݏ ݂݋ ݄ݐ݈݃݊݁ ݈ܽ݊݅݃݅ݎ݋
ܣ ؔ ݊݋݅ݐܽݑݐܿܽ ݂݋ ݁݀ݑݐ݈݅݌݉ܽ
:ߣ ൌ ݈݁ܿݕܿ ݐ݅ܽ݃ ݂݋ ݀݋݅ݎ݁݌
߮ ؔ ݁ݏ݄ܽ݌

 t=0.0sec. t=0.5sec. t=1.0sec. t=1.5sec. t=2.0sec.

Figure4.7 – Piston Segment (blue) can be added to structures. The system can create
randomly generated segments with random numbers of Actuators.

Chapter 4: Experiments in Evaluation and Selection

142

- Design Platform for Kinetic Architecture (Draw Mode)

Draw mode ‘ON’ allows users to add segments
to create new configurations. Standard
segments can be turned into Actuated Piston
segments by selecting them and turning color
from green to blue.

Figure 4. 8 – Example of Kinetic Structure (w/ Animated Dynamic Structural Deformation)

Chapter 4: Experiments in Evaluation and Selection

143

4.2 Design Search: Turtle Implementation of L-system

4.2.1 Introduction

In this section, I would like to introduce a system to create generative designs and

represent implemented functionalities of the software. The concepts discussed in the

following section are inspired by Lindenmayer systems, introduced by Aristid

Lindenmayer and Przemyslaw Prusinkiewicz (1990), and ideas of turtle geometry

introduced by H. Abelson and A. diSessa (1982). Integration of turtle geometry and L-

system was also introduced in (Lindenmayer, 1990) and in more recent work by H.

Gregory (2003). H. Gregory displayed the use of these methods for various design

purposes, including a design of tables from a few utility functions. A number of papers

on evolutionary computation from the area of computer science, including (Gregory,

2003), have become an inspiration for this project. However, their papers do not address

the architectural applications of generative design systems. One of the main goals of this

thesis is to study the potential use of generative design algorithms for architectural design

at the schematic level. This study will seek a possibility of using pure mathematical and

computational strategies in design creation processes.

4.2.2 Method

The generative design system is composed of a part that generates various designs, the

building engine, and a part that evaluates various design instances, the selection sequence.

This framework follows the second method introduced in the last chapter – search. The

former part of the system, generation, uses a turtle interpretation of L-system, and the

latter, selection, uses evolutionary algorithms based on genetic algorithm/programming.

Chapter 4: Experiments in Evaluation and Selection

144

Design instances created by the former system are evaluated by the latter system to form

better instances for the next generations, and this iterative loop produces a computational

selection process analogous to natural selection.

4.2.3 Design Generator (Building Engine)

The advantage of using L-system with turtle geometry is that the design can be described

by procedural (functional) representation composed of series of strings instead of using

hard-coded geometrical information. This will allow for the representation of geometric

shapes to be more concise. It is also easier to extract their geometrical characteristics in

abstract form and to edit them more efficiently.

The turtle works as a builder for designs, and ‘string’ of command sequences gives

instructions to a turtle to build structures out of unit voxels. The table below shows

different types of instructions that form the design language for the turtle. The turtle

places voxel building blocks as it moves based on the instructions composed of strings.

The turtle works as a builder agent in this application.

Code Description _
F(n): move in the positive x direction n units
B(n): move in the positive x direction n units
R(n): rotate heading about z-axis n ä -90± (right)
L(n): rotate heading about z-axis n ä 90± (left)
U(n): rotate heading about y-axis n ä 90± (up)
D(n): rotate heading about y-axis n ä -90± (down)
C(n): rotate heading about x-axis n ä 90± (clockwise)
O(n): rotate heading about x-axis n ä -90± (counter clockwise)
[](n): repeat enclosed operations n times (replicator block)
{ }(n): restore orientation & location (push & pop operator)

Table 1: Design Building Language Builder’s Direction in 3D

 Z

 R L

 U
 Y
 C
 D
 O
X

Chapter 4: Experiments in Evaluation and Selection

145

Using Replicator bracket

- Generative Grammar Instruction

F5R1F5 [F5R1]4 [{F5[F5R1]4}R1]4
 = F5R1F5R1F5R1F5R1 ={F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5RF

5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R
1F5R1F5R1}R1

[[{F5[F5R1]4}R1]4U1F8D1]4
=:{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1U1F8D1{F
5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1U1F8D1{F5F5
R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1U1F8D1{F5F5R1F
5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1{F5F5R1F5R1F5R1F5R1}R1U1F8D1

=B4R7L5R2{B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B
6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B
6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B
2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B
4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B
4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F
1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2B4F0U6D5{F0U2F6B4U2B0B
6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B
6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F
4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}
B1F2}R5F2B2L0C7D3O5F8U8L3F2F7{{}B4}B3R2{B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F
6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F
6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F
4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2B4F0U6D5{F0U2F6B4U2B
0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B
0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C
2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7
}}B1F2B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6
B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4
C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3
U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2}R5F2B2L0C7D3O5F8U8L3F2F7{{}B4}B3R2{B4F0U6D5{F0U2F6B4U2
B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2
B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4
C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C
7}}B1F2B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F
6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C
4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C
3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B
0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B
0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B
4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2}R5F2B2L0C7D3O5F8U8L3F2F7{{
}B4}B3R2{B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6
U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6
U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2
B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2B4F0U6D5{F0U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4
U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4
U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1
B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B1F2B4F0U6D5{F0U2F6B4U2B0B6
F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6
U2F6B4U2B0B6F6B4U2B0B6F6B4U2B0B6D6}F2{D4F6O6D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4
F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3D1U1B7B6U1C4C2F4F1B2B4C3U4O3O2F2B8L0O8O7O4B3C2{C7}}B
1F2}R5F2B2L0C7D3O5F8U8L3F2F7{{}B4}B3

Figure 4.2.1 – Examples of design pattern using Generative Grammar.

Using Push/Pop Matrix bracket to restore Turtle Position

Chapter 4: Experiments in Evaluation and Selection

146

4.2.4 Generative Grammar Instructions

L-system is a grammatical rewriting system that can encode various geometrical schemes.

A hypothetical virtual movable node is commonly called a “turtle” in the field of

computer graphics, and a turtle’s trajectories are represented by a few alphabetical

characters which represent the turtle’s heading directions and movements. For example,

‘F5’ means that a turtle moves forward for 5 units’ distance, and ‘R2’ means that a turtle

turns 2ä90 degrees right from a current heading direction. These alphabets and numbers

can form sentences that instruct a turtle to move to a specific location. In this program, I

use turtles’ trajectories to produce three-dimensional structures. In principle,

combinations of these operators and numbers can form any contiguous geometry in three-

dimensional lattice space. In addition to these basic operators listed in the above table,

there are two special operators: [] – the replicator operator, and { } – the push-pop

operator.

The replicator operator repeats a block of operations enclosed by square brackets for a

given number of times that is indicated right next to the brackets. (See the examples

below.) The push-pop operator restores a current location of a turtle while it executes

operations within curly brackets. After the execution, the turtle goes back to the original

location and starts executing the operators preceded by the curly brackets. This operator

is useful when one is designing branches.

- Generates String in Random Sequence

string[] commands = new string[] {"F","B","F","B","F","B","L","R","U","D","C","O"};
int leng = rand.Next(randomLength)+codeLength;
for (int i = 0; i < leng; i++)
{
 code += commands[rand.Next(12)];
 code += rand.Next(9).ToString(); }

//Generated Code sequence
code=”F2R5L4F8B3O3F2C1U3F8L2B3D4B0O0B5O8F4D0D1F0F5O0U1F1F6U7O8D1D8F3F3F3B4B3
F5R0L3F7B6C0R6U5C0O1U5F7O0F5R5R1B0D6B6B4D8D1B1D2U4L3L8R6B7F4F5F7F5O4O0B1U3F7”

Chapter 4: Experiments in Evaluation and Selection

147

- Inserts Replicator Brackets and Push/Pop Operators ([] & { })

code=”F2R5[L4F8{B3O3F2[C1U3F8L2B3D4{B0O0{B5O8F4[[D0D1F0F5]3O0U1F1F6U7O8D1D8F
3]4}F3F3{B4B3F5}}R0L3F7B6C0R6U5C0]4O1U5{F7O0F5R5R1}B0D6B6B4D8}D1B1D2U4L3]4{L
8R6B7F4{F5}F7F5O4O0}B1U3F7”

Figure 4.2.2 – Example of Auto-generated design pattern from the code above.

4.2.5 Evaluation Sequence Using Evolutionary Computation

This program’s design search process follows an algorithmic flow of a genetic algorithm.

After making an initial population randomly, individuals (schemes) in the initial

population are evaluated based on various architectural fitness functions. Elite schemes

remain as parent schemes to generate new generations of population by using operations

such as crossover and mutation. The algorithm repeats the same sequence until it satisfies

required fitness threshold values. Encoding of geometrical information using turtle

geometry and L-system is useful because it permits string-based operations such as

crossover and mutation.

 1. Generate Initial Population
 2. Evaluate and Rank them based on Fitnesses
 3. Produce Population for next Generation

- Cross Breeds Elite group from Population
 - Mutates some of them
 4. Go Back to 3 and evaluate new generation.
 5. Repeat Steps 2~4 until the Fitness values reach requirements.

 Algorithmic sequence of GA

Chapter 4: Experiments in Evaluation and Selection

148

Chapter 4: Experiments in Evaluation and Selection

149

Chapter 4: Experiments in Evaluation and Selection

150

4.2.6 Auto-Generation of Design Patterns

Composition of these operators can be automated. By randomly choosing operators and

concatenating them into a single instruction for a turtle, one can obtain randomly

generated three-dimensional structures. By inserting replicator and push-pop brackets

random numbers of times at random locations, structures can have more geometrical

variations. This automated process of generation becomes a generator for the program.

The initial population is created randomly by this process. The crossover and mutation

are two operations that can be applied to instructions for turtles to produce new

instructions. The following examples display results of two operations visually in an

intuitive manner.

 [U1F7U7O8D1F3]4 [F8{{F3[U1F6]4}R1F8}]2

 [U1F7U7O8D1F3]4 [F8{{F3[U1F6]4}R1F8}]2

[F8{{F3[U1 [U1F7U7O8D1F3]4 F6]4}R1F8}]2

Cross Breeding (Crossover): - Generating New String from Population

Chapter 4: Experiments in Evaluation and Selection

151

 [F8{{F3[U1[U1F7U7O8D1F3]4F6]4}R1F8}]2 [F8{{F3[U1[U1F7U7O8R1F3]4F6]4}R1F8}]2

Mutation: - Pick random sequence from strings and replace them.

4.2.7 Fitness Functions: Evaluations

The following are various types of evaluations that have been designed and used for this

program. Different combinations of the following functions are used in order to direct the

growth and selection sequence of structures, each in unique ways. Multiplications of

functions are used to combine different characteristics of evaluations, and some weight-

factors (ε) are also multiplied in order to implement weights for each function’s

importance.

݊݋݅ݐܿ݊ݑܨ ݏݏ݁݊ݐ݅ܨ ൌ׷ ଴ߝ כ ଴݈ܽݒܧ כ ଵߝ כ ଵ݈ܽݒܧ . כ . . . כ. ௡ߝ כ ௡ ሺ0݈ܽݒܧ ൑ ௜ߝ ൑ 1ሻ

Previously, chapter 3 reviewed three different approaches for integrating multiple results

from various fitness functions used in multi-objective optimizations. Those methods are

plain aggregation methods, population-based non-Pareto approach, and Pareto-based

approach. In this program, I chose to use a simple plain aggregation method. The use of

other methods and results from them will be good future explorations. Listed below are

various functions that are used for evaluation of architectural structures. Some of their

utilities contradict each other.

Chapter 4: Experiments in Evaluation and Selection

152

- EvalAveHeight (Evaluate Average Height)

This function is evaluating every single voxel’s height (in the z-axis) and calculating

average height. This will select proportionally taller and more slender structures; however,

use of this function alone may also select tree-like upside-down structures, flaring

upward, which may not always have a good structural performance.

foreach (Box t in BoxList)

 {
 totalHeight += t.vPos.z;
 }
 return (float)totalHeight / (float)BoxList.Count;

- EvalBoxCount (Evaluate Numbers of Voxels)

This function is counting numbers of voxels in the structure. If you want to grow the

structure (or instructions in a string form) to simply use more voxels, this function works.

Normally, this does not impose any morphological tendencies to a certain form.

return (float)Math.Pow(T.BoxList.Count, 2.0)
(using power of 2 is also a good strategy to add more importance to a function.)

- EvalDenseBound (Evaluate Density relative to a BoundingBox)

This function calculates density of the structure relative to its bounding box. Bounding

Box is a box that encloses an entire structure in x, y, and z directions. This will select

more compactly shaped structures and avoid structures with excessive cantilevers, etc.

The density relative to Bounding Box is only one way to represent density. The next

density calculation using convex-hull may make more conventional sense.

return(float)(BoxList.Count/((maxX-minX)*(maxY-minY)*(maxZ-minZ)));

maxX,minX,maxY,minY,maxZ,maxZ represent maximum and minimum
values of structure in x,y,z axes.

Chapter 4: Experiments in Evaluation and Selection

153

- EvalConvexHull (Evaluate Density based on Convex Hull Area of each floor)

This function calculates the area of convex hull for each floor level in z-axis and finds a

ratio of occupied area relative to the convex hull area at the floor.

ݏݏ݁݊ݐ݅ܨ ൌ׷
ݏ݈݁ݔ݋ܸ ݂݋ ܽ݁ݎܣ ݈ܽݐ݋ܶ

∑ ௜ሻݎ݋݋ሺ݂݈ ݈݈ݑ݄ ݔ݁ݒ݊݋ܿ ݂݋ ܽ݁ݎܣ

- EvalStress (using Finite Difference Method)

This function revisits the technique, Dynamic Animated Structural Deformation, which I

used for my software. This function calculates average amounts of stress at each node in

the structure using the finite difference method (Euler method) for a certain period of

duration. (This method checks structural deformations per explicit time step and iterates

the process.) If the generated structure has more stability and balanced geometry, the

stress will be less.

Skeleton s = new Skeleton
// calculate Stress at finite time dt=0.001 and iterate

 for (int i = 0; i < Duration; i++)
 {
 s.calcStress(dt=0.001);
 }
 // calculate Average Stress at Particle (Node)

float stress = 0;
 for (int k = 0; k < numParticle; k++)
 {
 stress += (float)((particle[k].stress /

Convex Hull Area

Filled Voxel Area

Floor i

Chapter 4: Experiments in Evaluation and Selection

154

 particle[k].numStress) / maxStress);
 }
 return stress /= (float)numParticle;

This method turns all forces inside the structure into axial forces and calculates the stress.

It is a fairly reliable method to find the structural balance of the blocked cluster at a

schematic design level; however, the time that it takes to calculate all stresses at every

node is too long to use for generations of evolutionary computation.

- EvalCenterMass (Evaluate Center of Mass)

This function calculates the center of mass (assuming the same material density

properties throughout a structure) at each floor level and measures the deviation distances

of center of mass of each floor level from the center of mass of the entire structure. In

other words, if the center of mass location at each floor fluctuates less, your structure is

considered to have more balance. This is relatively unsophisticated compared to the

previous methods using finite difference method, but the time for calculations is faster.

- EvalExposedFace (Evaluate numbers of exposed open faces)

This function calculates numbers of open faces exposed to the air rather than blocked by

their neighbors. This is useful when we want to know roughly how much open window

area we want to propose for the new structure.

 //Total maximum 6 open windows per voxel

foreach (Box t in BoxList)
 {
 totalOpenFaces += t.OpenWindows;
 }
 return (float)totalOpenFaces / ((float)BoxList.Count * 6);

Chapter 4: Experiments in Evaluation and Selection

155

 Generation5 Generation25

 Generation10 Generation35

 Generation20 Generation55

4.2.8 Evolutionary Runs

Initial populations are randomly produced. I have listed screenshots of several results

from different combinations of fitness functions in the following pages.

Example:

݊݋݅ݐ݈ܽݑ݌݋ܲ ൌ 20;
ݏݏ݁݊ݐ݅ܨ ൌ ሺ ሻݐ݊ݑ݋ܥݔ݋ܤ݈ܽݒܧ כ ሺ ሻݐ݄݃݅݁ܪ݁ݒܣ݈ܽݒܧ כ ;ሺ ሻ݀݊ݑ݋ܤ݁ݏ݊݁ܦ݈ܽݒܧ

Example of simple evaluation up to 10 generations is calculated. No structural evaluation
is implemented. Initial populations are too small, with the consequence that the later
populations are highly biased by them.

Chapter 4: Experiments in Evaluation and Selection

156

 Generation 2 Generation 5

 Generation 3 Generation 6

 Generation 4 Generation 9

Example:

݊݋݅ݐ݈ܽݑ݌݋ܲ ൌ 50;
ൌ ݏݏ݁݊ݐ݅ܨ ሺ ሻݐ݊ݑ݋ܥݔ݋ܤ݈ܽݒܧ כ ;ሺ ሻ݈݈ݑܪݔ݁ݒ݊݋ܥ݈ܽݒܧ

In this case, the fitness evaluation tends to give higher values for flatter, more balanced,
and larger (with more voxels) structures. In generations beyond 10, high-scoring schemes
from earlier generations became dominant species and the search process started to be
stagnated at local maxima by producing similar structures. Higher mutation rates and
larger populations need to be considered to get improvement.

Chapter 4: Experiments in Evaluation and Selection

157

 Generation 2 Generation 5

 Generation 3 Generation6

 Generation 4 Generation 9
Example:

݊݋݅ݐ݈ܽݑ݌݋ܲ ൌ 50;
ൌ ݏݏ݁݊ݐ݅ܨ ሺ ሻݐ݊ݑ݋ܥݔ݋ܤ݈ܽݒܧ כ ሺ ሻݐ݄݃݅݁ܪ݁ݒܣ݈ܽݒܧ כ ;ሺ ሻ݀݊ݑ݋ܤ݁ݏ݊݁ܦ݈ܽݒܧ

In this case, the fitness evaluation tends to select taller and denser structures; however,
there are not enough evaluations relating to structural efficiencies. So, the generative
process produced leaning towers. I found that multiplying EvalStress using Finite
Difference Method would solve this problem, but the calculation time was not practically
useful relative to an accessible current computational speed. Here again, biases from
earlier generations are too strong, producing apparent stagnation again at the local
maxima.

Chapter 4: Experiments in Evaluation and Selection

158

4.2.9 Procedural Representation Using Parametric L-System

Procedural (functional) representation allows having more concise instructions for form

generations. Parameters n and m inside the Expression-operator are used to parameterize

the growth of forms and they are executed based on conditional statements. Explanations

of Expression-operators are as follows.

Expr1(n, m): If (n > 1)&(m>0) {{{F(n*2)R1F(n*2)}R1 Expr1(n-1, m) }

 Else if (n > 0)&(m>0) U1F(3+m)D1 Expr1(n+m-1, m-1)

 Expr1(4,1) Expr1(4,2) Expr1(4,3)

Expr1(n=4, m=3):
n=4 m=3

Expr1(4, 3)={{F8R1F8}R1{F6R1F6}R1{F4R1F4}R1{F2R1F2}R1}U1F6D1 Expr1(3,
2)

n=3 m=2
Expr1(3, 2)={{F6R1F6}R1{F4R1F4}R1{F2R1F2}R1}U1F6D1 Expr1(2, 1)

n=2 m=1
Expr1(2, 1)={{F4R1F4}R1{F2R1F2}R1}U1F6D1 Expr1(1, 0)

n=1 m=0
Expr1(1, 0)= Terminates Operation (m ≤ 0)

Expr1(4, 3):=

{F8R1F8}R1{F6R1F6}R1{F4R1F4}R1{F2R1F2}R1}U1F6D1{{F6R1F6}R1
{F4R1F4}R1{F2R1F2}R1}U1F6D1{{F4R1F4}R1{F2R1F2}R1}U1F6D1

Mutation of Parameters

Current Scheme = {Expr1, Expr2, … , ExprN}; (Example Scheme)

 Expr1(n,m) = if(n>3) then Expr2(m)Expr7(n-1)

If(n>0) then Expr6(m-1) (Example Expressions)

If(n>0) then Expr6(m-1) If(n>3) then Expr4(m+1) (Mutation example)

Chapter 4: Experiments in Evaluation and Selection

159

Rule strings for form can be composed based on several sets of Expressions with various

parameters, and they can cross-reference each other based on varying conditional

statements. Concise forms of expressions can be mutated and recombined to create newer

rules to search for better fitness. Parameters can be directly mutated, and more pin-

pointed updates are possible with these processes.

Figure 4.3. – Design Patterns created by Parametric Representations

Chapter 4: Experiments in Evaluation and Selection

160

4.2.10 Future Work

Parametric representation will create an algorithmic system that is similar to genetic

programming (GP), and the potential of evolutionary computation using parametric

representation needs to be further investigated. Differences in cross-breeding and

mutation operations between non-parametric and parametric functional representations

will be a particularly important investigation. The system proposed in this section can

implement more specific architectural constraints based on various fitness functions.

More specific architectural information such as occupancies, site configurations, far-area-

ratio (FAR), and so on can be implemented for more practical applications.

Some of the functions are computationally too time-consuming. The EvalStress function

is suited for visualizing structural performance; however, some other simpler and faster

calculation method is anticipated for this type of generative algorithmic framework that

deals with numbers of populations of schemes.

User interaction can be easily implemented by having users select particular schemes that

are preferable based on their visual observations. Regardless of the values from fitness

evaluation, some scheme may become important for a certain user due to various reasons.

This is the interactive GA framework that I reviewed in the last chapter. This

functionality will shed light on some characteristics that are difficult to define as fitness

functions. Since all schemes can be represented by (essentially) a series of strings, even if

the characteristics are not mathematically formulated, those characters are already

encoded inside of the abstract form of strings.

Chapter 5: Experiments in Growth and Adaptation

161

Chapter 5

Experiments in

Growth and Adaptation

Introduction

In this chapter, implementations of the third category of the computational methods from

chapter 3 – growth and adaptation – are introduced through two examples of design

problem frameworks. The first example shows growth models using diffusion-limited

aggregation (DLA), and the second example shows physical implementation in

architecture using a multi-dimensional optimization method called the Nelder-Mead

method. The concept of growth and adaptation is the main focus of the thesis, and

conceptual foundations introduced in this chapter from these experiments will lead to the

more elaborate applications in the next chapter.

5

In

re

ag

el

(l

an

ra

gr

F
Z

F

5.1 Gro

n this sectio

ealize the th

ggregation i

lectrodeposi

lightning pat

nd Sander (

andomly wa

rowing clust

Figure 5.1.1 –
Zinc electrodep

Figure 5.1.2 –

wth: Diff

on, diffusion

hird category

s a process

ition, miner

th), and even

(1981) propo

alking partic

ter when the

– DLA Examp
posit (middle

– Perspectives

ffusion-lim

-limited agg

y of comput

of accretion

ral deposit

n in living or

osed a theor

cles launche

ey arrive at a

ples: Colony o
e) from (Sand

s of DLA mod

Ch

mited Ag

gregation (D

tational imp

n over time a

ts, snowfla

rganisms, su

ry that expla

ed from dis

a site adjacen

of Paenibacill
er, 2000), Pla

del with 10,00

Chapter 5: Expe

ggregatio

DLA) will be

lementation

and is observ

ake formati

uch as the gr

ains DLA g

stant points

nt to the aggr

lus dendritifo
an view of mo

00 cells. Mod

eriments in Gro

on (DLA)

e focused on

– growth. D

ved in many

ions, dielec

rowth pattern

growth, and

stick to th

regate.

ormis bacteria
odel by the au

dels by the aut

owth and Adap

)

n as a metho

Diffusion-lim

y systems su

ctric breakd

n of coral. W

their idea is

e surface o

a (left)
uthor (right).

thor.

ptation

162

od to

mited

uch as

down

Witten

s that

of the

Chapter 5: Experiments in Growth and Adaptation

163

5.1.1 Laplacian DLA Model Based on Probability

The DLA-cluster can also be interpreted as an aggregate where the formation is

controlled by the probability of particles reaching the cluster. Witten and Sander provided

the mathematical explanation that the random-walk DLA model can be rewritten as the

Laplace form of the diffusion equation based on the probability of a particle at position x

at time t as u(x, t). (Witten and Sander, 1981).

The change of u over time ∆t is given by

,റݔሺݑ ݐ ൅ ሻݐ∆ െ ,റݔሺݑ ሻݐ ൌ
1

2݀
෍ ሾݑሺݔറ ൅ ,റ௜ݔ∆ ሻݐ െ ,റݔሺݑ ሻሿݐ

ଶௗିଵ

௜ୀ଴

ൌ
1

2݀
෍ ሾݑሺݔറ ൅ ,റ௜ݔ∆ ሻݐ െ ,റݔሺݑ2 ሻݐ െ റݔሺݑ െ ,റ௜ݔ∆ ሻሿݐ

ଶௗିଵ

௜ୀ଴

, where d is the dimension of the lattice. The above can also be written as,

,റݔሺݑ ݐ ൅ ሻݐ∆ െ ,റݔሺݑ ሻݐ ൌ
ݑ߲
ݐ߲

כ ݐ∆

From the above two equations, they can be rewritten as

1
2݀

෍ ሾݑሺݔറ ൅ ,റ௜ݔ∆ ሻݐ െ ,റݔሺݑ2 ሻݐ െ റݔሺݑ െ ,റ௜ݔ∆ ሻሿݐ
ଶௗିଵ

௜ୀ଴

ൌ
1

2݀
෍

߲ଶݑ
ଶݔ߲

௜

ଶௗିଵ

௜ୀ଴

ሺ∆ݔ௜ሻଶ ሺ1ሻ

, which generalizes to the Laplace form of diffusion equation,

ݑ߲
ݐ߲

ൌ ݑଶߘߟ

, where η is the diffusion constant.

Solving the equation (1) with the boundary conditions u(x, t)=0 where x is inside the

DLA cluster and u(x, t)=constant where x is an infinite distance away from the center will

provide the probabilistic growth model of DLA, and we can gain the same results from

random walk DLA (Witten, 1981).

Chapter 5: Experiments in Growth and Adaptation

164

Theoretically, this probability for potential growth area can be assigned based on more

complex information relating to architectural constraints such as light, view, circulation,

structure, and so on.

This experiment was started by measuring views and distances among the unit cells

within 10 units’ distance around the potential next deposition locations in order to

maintain a certain level of privacy among the units. As a result, growth of thin diagonal

branches was observed and they all kept a certain distance from others. By biasing the

probability in south-north orientation, the growth toward a certain orientation can be

directed based on a specific condition of solar radiation. The growth can be constrained

within a bounded zone as well. In this case, instead of branches, formations of parallel

layers of strata were observed.

In addition to aggregation, reductive processes can be used by introducing a predator that

eats the units which have lower values among the existing cells. This process will

maintain a better overall value for the cluster by replacing old cells with new ones as if it

were metabolizing them.

Figure 5.1.3 – Initial Seed as a planar surface

Chapter 5: Experiments in Growth and Adaptation

165

5.1.2 Architectural Applications of DLA

1) Random walk DLA model:

Firstly, provide the cell at the center of the lattice as a seed point. Pick a square at the

perimeter of the lattice and place a randomly walking particle on that square. With each

time step, this particle moves to one of the adjacent squares, top, down, left, right, above,

or below. The particle continues to move until it arrives at the empty cells adjacent to any

existing cells that are already occupied, and it sticks there. Release a next particle and

repeat the above process. The figures below show results of structures composed of

50,000 and 100,000 particles. In this experiment, an initial seed cell is located at (0, 0, 0),

and particles move within the positive area of z-axis. The plan view below resembles

typical DLA patterns in two dimensions.

Figure 5.1.4 – Three-dimensional clusters created by Diffusion-Limited Aggregation. DLA
cluster with 10,000 cells. Approximately 550% more opening areas than the structure using
simple 10x10x100 tower configuration.

Chapter 5: Experiments in Growth and Adaptation

166

Figure 5.1.5 – Three-dimensional clusters created by Diffusion-Limited Aggregation. Examples
of clusters by various probabilities for potential growth area.

2) Probability based on Density/Openness:

Getting an idea from this probability-based DLA model, probability for each square in

the lattice is assigned based on a certain logic. In architecture, when we design the layout

of units, especially for residential buildings, natural lighting from all sides is a critical

issue. It is not desirable to have two units facing each other in too close proximity. Firstly,

the probability is calculated based on the numbers of units around the potential

unoccupied cells within a certain distance (5 and 10 units’ length). This is the equivalent

of calculating a density around a certain radius of bounded area. The unoccupied cell

with higher density or openness to surrounding conditions will have less probability to be

occupied by the next time step. By using the density measure for a larger area (10 units’

length rather than 5 for the area by which to measure density), longer branches are gained.

Hence, for the structure as a whole, the average numbers of open faces per cell become

Chapter 5: Experiments in Growth and Adaptation

167

higher, and the resulting structure has more exposure to daylight and views compared to a

simple extrusion of rectangular plan configurations with the same total volume. An

average performance of daylight exposure over a certain duration of growth periods is a

particular interest of this project. Solutions at each time step may not provide the optimal

solution for specific conditions at the step; however, the DLA method continues to search

for good configurations throughout the growth processes over time.

Figure 5.1.6 –
Intertwining branches: 5,000 particles with density level measured up to 5 units’ distance

Chapter 5: Experiments in Growth and Adaptation

168

3) Bias Toward the North-south Direction:

Adding bias toward the north-south orientation by increasing the values for calculating

density on that direction enhances or restricts the growth along that direction. In

architecture, the lighting from the south is more desirable for the northern hemisphere of

Earth, and I intended to break the symmetry of configurations in the north-south direction.

Since there is no boundary limit in the lattice, the diagonal branching extends while

maintaining the maximum distance for density calculation. The bias suppressing the

growth in a two-dimensional plane produces a typical two-dimensional DLA pattern, and

there is a similarity to the density distribution pattern of many urban areas. This is also

stated in a similar study (Batty, 2005).

Applied Bias at the N-S direction:

for (int i = -10; i < 11; i++)
{
if(i!=0 && ii+i>0 && ii+i<gx)
 val += 2 * grid[ii + i][jj][kk];

 if(i!=0 && jj+i>0 && jj+i<gy)
 val += grid[ii][jj + i][kk];

 if(i!=0 && kk+i>0 && kk+i<gz)
 val += grid[ii][jj][kk + i];
}

Figure 5.1.7 – Controlled bias toward North-South direction

Chapter 5: Experiments in Growth and Adaptation

169

I kept the implementations of the probability rules at an abstract level in this experiment.

However, more specific information can be described. This probability for each square

location can be based on more architectural evaluation of the spaces, such as sunlight

exposure or accessible pedestrian circulation. The coral growth model by J. Kaandorp

(1994) uses nutrient concentration level around the developing structure as the

probability for the DLA while using a fluid dynamics model to simulate nutrient

movement. In the case of architectural applications, the flows of nutrient can be replaced

by the flows of occupants, pedestrians, car traffic, and so on. This is also a concept

relevant to many topology optimization techniques. Shapes of automobiles can be

sculpted by the movements of particles that simulate the aerodynamic flow of air. This

reverse engineering process can be applied to architectural form, making use of the

behaviors of occupants as an active sculptor of the space.

4) Constrained Boundary Condition for Growth and Swapping

Most of the developments in building scale are constrained within a certain bounded area

in plan view (an xy-plane) and a height. It is more likely to be meaningful to find out the

growth within a constrained bounded region. The result using 50,000 particles within a

40x40x40 grid area with a 10-maximum-unit-distance for the density measure shows a

series of parallel strata diagonally occupying the grid area instead of forming one-

dimensional linear branches.

Introducing a predator that consumes the units which have lower values, based on the

density calculation, is another idea I used. The unit with too-high density is considered to

be useless without having enough exposure to daylight. Hence, it is eliminated. Instead, I

Chapter 5: Experiments in Growth and Adaptation

170

reproduced a new cell at the location with highest potential daylight exposure value.

Repeating this process, “swapping,” is expected to improve the overall value for the

cluster of units. I observed gradual extension of branches and reduction of densely

populated areas as seen in the figure below. Applying the same process 2,000 times for

the above cluster in the constrained boundary, I recognized clear emergence of strata.

The basic DLA process is primarily an accretive process, and the introduction of an

elimination process can be interpreted as an implementation of selection among the cells.

- Constrained Boundary Conditions

Figure 5.1.8 – Diagonal Strata emerged.
5,000 particles constrained within 40 x 40 x 40 grid with
10 unit distance for the density measure (left)
After swapping 2,000 iterations (right)

Chapter 5: Experiments in Growth and Adaptation

171

- Swapping Process

Figure 5.1.9 – 1,000 particles with 10-unit distance for the density measure and swapped 600
times. Branches extend outward after the swapping.

Original

200 times
swapped

600 times
swapped

Chapter 5: Experiments in Growth and Adaptation

172

5) Erosion (Subtraction Algorithm):

The last method, erosion, is the inverse process of accretive DLA process by elimination.

The erosion process repeats the following: The process starts from the solid lattice filled

with cells, and releases a predator particle inside a field of forces from a randomly

assigned point at some greater distance. The particle flows along the force field defined

by various vector field functions and scrapes the cluster when it hits the solid parts. The

parts where more particles flow in will be eaten away faster. For the figures below, the

following torus knot equation is used to increment the flying “eliminator” particle’s

trajectories.

x(t+∆t)=x(t)+30*(2+Cos(q*phi/p))*Cos(phi);
y(t+∆t)=y(t)+30*(2+Cos(q*phi/p))*Sin(phi);
z(t+∆t)=z(t)+30*(Sin(q*phi/p));
p=4, q=5;

This study required further investigation to gain more visual clarity, and the choice of the

proper vector fields also needs to be studied more. This technique can be used for

simulating soil erosion by river currents and other similar phenomena.

Figures 5.1.10 – Erosion Process

6)

- N

-

-

) Animat

Normal Disp

Truss Display

Animated Str

ed Dynamic

lay

y with Shear

ructural Defo

Figu

c Structural

Bracing Mem

rmation with

ure 5.1.11 – A

Ch

l Deformati

So
dis
DL
fra
str
Th
an
be
ma

mbers

Stress

Animated Dy

De

De

Chapter 5: Expe

ion

oftware allow
splay modes.
LA logic wi
ame structur
ructural balan
his functional
n intuitive

haviors at the
anner.

ynamic Defor

esign Example fro

esign Example fro

eriments in Gro

ws three di
Massing sch

ill be replac
res in order
nces based o
lity is intende

understandin
e schematic l

rmations

om DLA Studies

om DLA Studies

owth and Adap

ifferent type
emes generat
ed by 3-D
r to approx
n all axial fo

ed to provide
ng of stru
level in a real

(Auto generated

ptation

173

es of
ted by
space

ximate
forces.

users
uctural
l-time

d form)

Chapter 5: Experiments in Growth and Adaptation

174

Figure 5.1.12b – Unsuccessful implementation example: Failing Structure

Figure 5.1.12a – Design Examples from DLA Studies (Auto Generated Forms)

Chapter 5: Experiments in Growth and Adaptation

175

Figure 5.1.13 – DLA Growth Sequence and Animated Dynamic Structural Deformation

Chapter 5: Experiments in Growth and Adaptation

176

5.1.3 Conclusion Regarding DLA Experiments

In this section, I listed several growth models developed from a simple DLA model

application. A DLA model is probably not the most reliable method to derive the optimal

configurations for specific conditions at a specific moment. However, its ability to

stimulate growth toward specific characteristics from simple probability-based stochastic

selections is robust and suited for describing growth patterns of spatiotemporal structures.

If the search space for the problem is relatively small, the conventional design strategy

can still analytically derive more deterministic and reliable solutions. What is more

intriguing about this process is that the system can provide quite robust solutions for

constant and endless changes, and the system is designed to maintain its balance as a

whole. For instance, accretive growth patterns of corals are simulated by a DLA model

and are known to closely follow its algorithmic pattern (Kaandorp, 1994; Merks, 2003).

Their growth behaviors appear to be quite transient during their development, though

their systems of growth are known to maintain effective forms to absorb nutrients in the

fluid.

In principle, beyond physical/environmental constraints, programmatic/social issues

relating to occupancy types, social issues, architectural programs, and code/zoning

constraints can be implemented by assigning proper probability fields over the site under

consideration. The probability-based DLA model has a remarkable resemblance to the

construction sequences of housing developments such as Kowloon, where people build

additions in the most probable and appealing locations at each time step. This seemingly

momentary and transient attitude toward construction is definitely not proper for the

Chapter 5: Experiments in Growth and Adaptation

177

design of a single residence with limited site area. However, here is a question: “What if

the system is subject to a constant demand for growth and alterations over relatively short

time intervals?” If the demand for growth, additions, or renovations is once or twice in

the lifetime of the structure, precise and deterministic planning for optimal results is far

more reliable. However, responding to constantly changing and unpredictable demands

for expansions, or possibly alterations and contractions, probably requires completely

different system behaviors.

One limitation of a method using DLA is that the method does not always guarantee to

provide an absolute best solution at every time step of growth. This is part of the nature

of stochastic simulation. Finding the deterministic optima for multiple steps in advance is

a challenge. One way to approach this can be to iterate through numbers of trials to find

fitter configurations multiple steps in advance.

Finding scenarios that require gradual growth over time in architecture is a challenge.

Except for some urban-scale developments, the scale of physical size and the magnitude

of time that it takes to grow have, for buildings, not reached a stage where we require

such a design method. In most cases, practitioners can forecast adequate solutions

analytically, and are very unlikely to find any kinds of building development that require

step-by-step constant improvements in shorter segments of time like Kowloon Walled

City. All that said, I would like to anticipate the emergence of architecture that takes

advantage of metabolic adaptation as seen in the accretive growth model by continually

adapting itself to new conditions as if it were an organic entity.

Chapter 5: Experiments in Growth and Adaptation

178

5.2 Adaptation: Physical Implementation Using

Multi-dimensional Optimization

 Figure 5.2.0 – Reconfigurable Components

In this section, I would like to propose a scaled prototype of architectural components

that can reconfigure themselves into globally functional configurations based on feedback

from locally distributed intelligence embedded inside the component. The project aims at

demonstrating a design system that can respond to a dynamically changing environment

over time without imposing a static blueprint of the structure in a top-down manner from

the outset of design processes.

Chapter 5: Experiments in Growth and Adaptation

179

5.2.1 Distributed Systems

Distributed control is one technical strategy to realize a feedback process inside a bottom-

up system, and this strategy can be applied to the control of multiple structures. Inputs for

this feedback system are fed from separated nodes and can be triggered by participation

of independently acting agents with some intelligence. The entire system’s behavior is a

result of feedback from multiple distributed intelligent sources, and such a system is often

called “collective intelligence.” The assembly and control of the subunits are governed by

the logic of a distributed system simulated by the use of multiple Arduino

microcontrollers (Arduino is an open-source electronics prototyping platform;

http://www.arduino.cc, 2010.) Appropriate geometrical configurations will be

computationally derived based on local communications among the components and

feedbacks based on physical-environmental criteria such as solar radiation (from various

sensors) and on social-programmatic factors.

Figure 5.2.1 – Concept of Distributed Controls

Chapter 5: Experiments in Growth and Adaptation

180

The objective of the experiment is to establish a system that can dynamically respond to

changes of light source locations in order to increase light exposure by reconfiguring its

components’ locations and angles toward the light source. Reduction in response time for

dynamic reconfiguration is expected from the application of the logic. Each component is

connected at the joint with two degrees of freedom provided by a pair of servo motors,

which offers sufficient variations in configurations when multiple components are

forming clusters. This mechanical set-up allows them to configure all possible patterns in

orthogonal geometry as long as all components are contiguous in series. Each

microcontroller is responsible for the control of several adjacent components (only two

controllers are used for the current experiments), and neighboring controllers can, in

principle, send and receive their states, such as their orientations in degree, levels of solar

radiation, thermal conditions from various sensors, architectural programs of components,

and so on. Based on feedback among the neighbors (informational exchanges among the

components), each microcontroller will send a signal to change its components’ states in

order to locally optimize its condition. Consequently, multiple interactions among the

locally defined actions lead us to obtain globally functional configurations rather than a

final form being imposed in a top-down manner.

Figure 5.2.2 – Established physical and virtual synchronization using the Virtual Controller
Software written in Java/Processing

Chapter 5: Experiments in Growth and Adaptation

181

To construct the present system, firstly, a graphic user interface which can display and

control four components’ movements was developed using Java/Processing language.

This allows bi-directional communication between physical and virtual environments

(Figure 5.2.2).

Figure 5.2.3 – Two degrees of freedom at joints. Panels orient toward a light source.

As a starting point of this experiment, each component was supplied with a photodiode

(light sensor) to measure the level of solar radiation at the panel surface (Figure 5.2.4).

Sensors returned the values to assigned microcontrollers based on the current orientations

of the components, which can be varied by rotations of the motors in tandem at the joint.

If components change their configurations with different rotation angles, naturally the

results from the four sensors will have different values. There are four panels connected

in series at three joints, so that there are, in total, six motors to govern all the

configuration patterns. In order to find better configurations to maximize average solar

exposures for each component’s panel surfaces, we have to find ways to derive better

combinations of the six rotation angles of the motors. This framework for the problem led

to the use of multi-dimensional optimization algorithms.

Chapter 5: Experiments in Growth and Adaptation

182

Figure 5.2.4 – Components autonomously find better configurations to maximize light exposure
at 4 sensor nodes at the middle of the panel using two different optimization algorithms.

Figure 5.2.5 – Physical and virtual synchronization using the software written in Java/Processing

Chapter 5: Experiments in Growth and Adaptation

183

5.2.2 The Nelder-Mead Method: Physical Implementation

The Nelder-Mead method is a commonly used nonlinear optimization algorithm and is

often used for minimizing an objective function in multi-dimensional space. In the case

of this experiment, the search is in six-dimensional space formed by independent

variables of six angles of motors, and the mechanical components literally become a

physical objective function to provide values (average values of four light sensor outputs)

which need to be minimized (the lower the sensor value, the higher the light input value).

First, the algorithm configures seven different physical configurations to sample light

values for each case, which will form a polytope of 7 vertices in 6 dimensions (using the

simplex concept). Then, the algorithm will rank them based on sensor values’ feedbacks

from the physical machine and search for vertices which provide better configurations of

new motor angles. The robot will show the best configuration and turn the LED indicator

on. The algorithm will repeat the above processes until it stops improving the value

above a certain minimum. This method is also nicknamed “the amoeba method” (see

Figure 5.2.7) since the way the polytope finds the new vertices and moves towards a

better solution inside the multi-dimensional space is similar to the movements of

amoebas. In case the directions of light sources are altered, the system will dynamically

react to the changes and will run the algorithm based on the values returned from the new

condition.

For searches in two-dimensional space, a polytope forms triangles (3 vertices), and

Figure 5.2.6 shows examples of amoeba processes applied to a simple 2-D objective

function. Each vertex of the triangle (ܤ, and ܹ in Figure 5.2.6) has a different value ,ܩ

fo

m

p

is

re

sp

fi

5

-

In

If

or the functi

method, the w

oint with a b

s to minimi

eflection, ex

pace based o

inds a better

.2.6).

Search Pro

Search
(6 Rot

nitial triangle:

f F(R)<F(G)

If F(B)<F(R

Reflection

Else
E=(R -
If F(E)
Else W

Expansion

F

Figu

ion ܨ (i.e., ܨ

worst point, W

better value

ze the valu

xpansion, con

on the functi

r vertex usin

cess

h in 6-dimens
tation angles o

: F(B)<F(G)<F

R) Then W R

 M) + R
)<F(B) Then W

W R

Figure 5.2.6 –

ure 5.2.7 – Am

ሻܤሺܨ ൏ ܩሺܨ

W, with the

by using the

ue of functio

ntraction, or

ion’s returni

ng one of the

ional space
of Motors)

F(W); R=(M

R

W E

– Amoeba pro

moeba proces

Ch

ሻܩ ൏ (ሺܹሻܨ

largest valu

e Nelder-Me

on F.) Acqu

r multiple-co

ing value of

e geometrica

 find
 4 sen

 Opti

- W) + M.

 Else

I

C

C
I
E
S

M

ocesses by Ne

sses applied t

Chapter 5: Expe

). In each i

ue from the f

ead algorithm

uisition of t

ontraction o

the newly d

al transforma

optimal light
nsor (light dio
imize minimu

If F(R)<F(W) T

Contraction

C=(M + R) / 2
If F(C)<F(W)
Else
S=(B + M) / 2

Multiple-Cont

elder-Mead M

to a simple 2-

eriments in Gro

iteration of t

function will

m. (In this ca

the new ver

of the curren

defined verte

ations of the

ting condition
odes) values t
um ܨሺ∑ݏ݊݁ݏ

Then W R

Then W C

 W S

traction

Method Algor

-D objective f

owth and Adap

the Nelder-M

l be replaced

ase, the obje

rtex is base

nt triangle in

ex. The algor

e triangle (F

n from averag
to
 ሻ݊ / ݅_ݎ݋ݏ

ithm.

function:

ptation

184

Mead

d by a

ective

ed on

n 2-D

rithm

Figure

ge of

Chapter 5: Experiments in Growth and Adaptation

185

Chapter 5: Experiments in Growth and Adaptation

186

Figure 5.2.8 – Robot tries to find better configurations to receive more light exposure on its four
panels using Nelder-Mead multi-dimensional optimization (previous page).

Figure 5.2.9 – The process of dynamic reconfiguration and search (this page).

Chapter 5: Experiments in Growth and Adaptation

187

Figure 5.2.10 – Possible future applications using reconfigurable units.

There are many types of multi-dimensional optimization methods similar to the Nelder-

Mead method (NM), such as the Levenberg-Marquardt algorithm. The choice of the NM

algorithm for the project was merely based on its simplicity of implementation and its

geometrically intuitive logic. Other nonlinear optimization methods can be selected for

different frameworks of problems in order to gain optimally better performances.

Prior to the Nelder-Mead method, the simpler random search method was tested. In this

method, an algorithm rotates each joint continuously in one direction until it stops

improving the assigned sensor values for the joint, compared to its former state. Then it

Chapter 5: Experiments in Growth and Adaptation

188

rotates the joint in the other direction to test the improvement. It is a simpler strategy for

preventing the system from stagnating at local optima. The results show that the use of

the Nelder-Mead method reduces the number of trials needed to find better configurations

compared to the simple random search. In addition, using the Nelder-Mead method,

responses of reconfiguration to dynamic changes of light source directions are better

(which means that fewer trials are required to obtain appropriate orientations of panels

for newly defined lighting conditions in changing environments).

Having physical mechanical components be an objective function providing fitness

values is a unique and original approach in this experiment. However, it is debatable

whether this approach is practically feasible for large-scale architectural applications.

Beyond a certain physical scale of application, moving architectural units physically to

test different configurations will be inefficient as the weight of the units becomes

prohibitive. Furthermore, the numbers of trials that are required to find optimum

configurations will increase exponentially as the numbers of components grow. The

virtual controller in this project reports the physical orientations of the components. For

future explorations to find more practical applications, it would be desirable to have more

comprehensive simulation environments that can virtually estimate structural,

programmatic, and environmental fitness, including energy calculations, without

physically moving the components. Bi-directional control combining the use of both

physical and virtual objective functions will allow error corrections between the two

environments and appears to be a more promising approach. More specific application

examples of this approach could be an architectural shading control that can respond to

unknown or un-programmed conditions by using direct feedback from physical

Chapter 5: Experiments in Growth and Adaptation

189

conditions. Another advantage of the application of a distributed system is robustness.

Unlike conventional central control systems, failure of several controllers does not imply

failure of the whole system, and this type of robustness is promising for applications of

architectural elements in exterior or inaccessible areas.

5.2.3 Discussion and Critique

Development of flexible and adaptable architecture has been a recurrent theme among

practitioners. There have been several inspirational projects in the past. During the 60s in

Japan, Metabolists introduced mega-structures that could constantly grow and adapt by

plugging prefabricated pods onto the infrastructural core; however, original visions of

metabolic growth and adaptation were rarely realized physically, as the sizes and weights

of the pods were practically very difficult to reconfigure. In the 90s, construction

automation (Shiokawa et al., 2000) by general construction companies in Japan shed light

on the concept of self-reproduction in architecture: architecture that can produce

architecture. However, there was still a clear division between assembler and assemblee

relationships. Mechanical components that could produce buildings were far from actual

livable architectural spaces. Thus they could only repeat, producing an identical or

similar building each time, and no future adaptation was available. Finally, some of the

speculative researches by computer scientists in recent years have started to show viable

prototypes representing self-reconfigurable systems using swarm robotics (Lipson, 2000;

Murata, 2006). In architecture, it is our responsibility to consider how these advanced

technical concepts can be applied to enhance our living space, and our design processes

Chapter 5: Experiments in Growth and Adaptation

190

may well be on the brink of a necessary transition from conventional methods to methods

that require evolutionary processes.

For this project, it is worth noting that the Nelder-Mead method is a heuristic method. A

heuristic method is a solving of a problem by iterative processes of trial and error and is

intended to find optimal solutions rather than to find a single deterministic solution.

Traditionally, we have a tendency to seek and construct an analytical problem-solving

framework due to the invisible pressure to find the final and best solution. Finding a

single solution, static in time, that satisfies various clients’ needs has been a typical

architect’s responsibility, and generating comprehensive plans as a blueprint is normally

anticipated. Conventional design problems in architecture may be more easily reducible

to an analytical problem-solving framework, compared to finding optimal solutions over

time every step of the way. As can be seen in this project, calculations of dynamic

reconfigurations for gradual growth of structure can be fairly extensive. This fact implies

that the deterministic analytical means are less adequate where we need concurrent

solutions for dynamically changing conditions, and we may need to rely on heuristic

search as the complexity of the project increases.

As for the implementation in architecture, it is extremely important to consider not only

physical and quantitative issues but also internal and qualitative issues. Environmental

issues such as lighting can be quantified and may be resolved to some degree; however,

more programmatic issues relating to logistics of architectural planning will need to

become a new focal point of research among our profession. An aim of the present thesis

is to show how self-reconfigurability can be incorporated into architectural design

Chapter 5: Experiments in Growth and Adaptation

191

processes in order to realize an adaptable growth model through an extremely simplified

working conceptual prototype.

The experiments in this section are not at the stage of providing a direct application to

existing architecture. In principle, the numbers of components can grow and reconnect to

expand the structure to respond to increasing and differentiating spatial demands. Solar

radiation was one criterion selected for the reconfiguration; however, various different

criteria can be technically implemented in the system. For instance, affinities among

various occupancy types and their adjacency relationships can be used as a selection and

morphing process of various architectural programs. This selection process can be

achieved by cellular automata-based logic, similar to the method introduced in (Arduino,

2010). Allocations of different architectural programs such as residence, office, and retail

spaces can also be optimized virtually by the use of various simulation programs and

physically by tracking the movements and behavioral patterns of occupants in the future.

Further investigation will be required for implementations of additional architectural

applications. The intention of the project has been to clarify the concept of dynamic

form-finding technique based on the bottom-up approach through a rather simple and

clear form of prototype.

5.2.4 Conclusion

In architecture, few structures have ever been built or conceived based on the active

application of distributed systems. Excluding some of the emergent formations of cities

on larger scales over longer spans of time, adaptation of distributed systems and

Chapter 5: Experiments in Growth and Adaptation

192

collective intelligence to architectural creations is an uncultivated area worthy of

investigation. This project is one such effort to demonstrate a novel design system

through a conceptual physical prototype that simulates the concept of dynamic adaptation

in architecture.

Chapter 6: Application of Self-organizing Computation

193

Chapter 6

Application of

Self-organizing Computation:
From Prediction to Synthesis

Introduction

Spontaneous settlements in many Third World cities are often regarded as undirected,

chaotic, and negative; however, their informal growth patterns exhibit transient and

flexible characteristics that can autonomously generate emergent infrastructures. This

research investigates the growth logic of informal settlements in relation to natural

environmental conditions.

Favelas in Rio de Janeiro are one such example that represents the decentralized

dynamics of squatter settlements. Typically, such settlements are located on urban land

that has remained unbuilt-on – areas such as deep valleys, river banks, and dangerous

slopes – because the squatters cannot afford to live on a safe site. Many of these

settlements are triggered by inadequacies in existing infrastructure, and informal

Chapter 6: Application of Self-organizing Computation

194

organizational networks can autonomously generate emergent infrastructures on the basis

of certain given factors. The settlements’ ability to adapt to landscape topology,

environmental changes, and radical population growth occurs through self-organizing

processes that can dynamically alter goals in accord with necessities and purposes arising

from groups of individuals.

This investigation explores the possibility that the “emergent” quality seen in informal

settlements is potentially beneficial for compensating for the lack of robustness in our

current top-down planning methodologies. Through on-site investigation of chronological

settlement patterns, simulation software will be developed from the knowledge acquired

from the site using agent-based computation. The purpose of this research is to find a way,

by investigating these informal organization processes, to synthesize this novel self-

organizing design concept with our existing top-down methodologies.

Figure 6.1 – Favela in Rio today called Rochina. (From http://irishabroad.blogspot.com)

Chapter 6: Application of Self-organizing Computation

195

The first part of the research will be the development of a simulation tool that can

represent the gradual growth patterns observed in spontaneous settlements. Use of a

multi-agent system is a valid strategy to simulate the decentralized dynamics of informal

settlements. The implementation of agents’ behaviors will be based primarily on

topographical conditions, intensity of existing traffic, and attraction to the emerging

destination locations; the chronological growth patterns of the settlements will be

encoded as a motivation for agents to initiate new constructions.

The second part of the research will be applications of the simulation tool to the sites of

various informal settlements. The primary focus will be on investigating the correlation

between sites’ unique landscape topologies and their settlement patterns. Locations and

proximity to natural resources such as water, natural greenery, and open land for farming,

are key incentives for settlers to initiate new constructions. Maps that represent the

chronological development of each site will be produced, and the morphological growth

process of the settlements in relation to land form and environmental criteria will be

investigated.

The development of a novel system that can simulate the spontaneous growth of cities in

precise geometrical detail based on a given landform and environmental conditions will

be a contribution to both landscape and architectural computation studies.

Chapter 6: Application of Self-organizing Computation

196

Figure 6.2 – Traditional settlement: Views of a town in Hajjarayn, Yemen (Costa, 1977).

Chapter 6: Application of Self-organizing Computation

197

6.1 Objectives

Landscape architect James Corner claimed in “Urban Natures” (2000) that “new city

forms are an amalgam of mobile agents, provisional colonies, and diverse components.

They are composed of small units and collectives rather than singularities, and bottom-

up organizations rather than top-down orders.” There is a growing interest in the logic

of city formation directed by self-organizing networks and in further utilizing these logics

in frameworks for design practice.

There are several existing software applications to generate hypothetical virtual cities.

Earlier, I have reviewed works by various researchers using shape grammar, L-systems,

and so on. However, most of them only display results at one static time frame and do not

portray a gradual growth process in a time series. As discussed above, many design

systems require imposing a specific design template based on typological layouts of cities

plus primary inputs of data, such as population densities. In addition, the emergent

process of city growth (the morphological growth process of cities) is highly influenced

by land form and environmental conditions of a site, and not many existing applications

are successfully addressing this point.

A crucial difference between the proposed system and previous approaches is that the

data of chronological development from the existing site will provide the implementation

of agents’ behaviors. The proposed system will not impose existing patterns as a design

template. Instead, the knowledge is acquired from the process of development steps over

time, and implementation of the knowledge is conditionally applied in continuous

Chapter 6: Application of Self-organizing Computation

198

sequences. Placements of buildings by agents are highly influenced by land forms,

climate, proximity to green areas, and water resources. In turn, agents will also be

changing the current environment by their placement of buildings, and these changes in

the environment will affect the agents’ next behavior. By concurrently updating their

behavioral patterns according to newly established conditions, the system can form open-

loop feedback. This open-loop feedback between agents and environment is necessary for

simulating decentralized dynamics of settlements.

Figure 6.3 – Emerging Trail Patterns found at Arthur’s Seat, Edinburgh, UK (From GoogleEarth,
2010 and http://www.panoramio.com/photo/4720638(top-right))

Chapter 6: Application of Self-organizing Computation

199

6.2 Emergent Design System

6.2.1 Development of a Design System: Technical Note

The entire system is written in the Visual C# programming language with the .NET

framework (Microsoft, 2010). C# is a modern, general-purpose, object-oriented

programming language and provides support for automatic garbage collection. The

language is generic enough for any type of software development, and simpler to use

compared to its predecessors such as C or C++.

Open Graphic Library (OpenGL) is used as a graphics library for the system (OpenGL,

2010). The OpenGL is the industry’s gold standard for a three-dimensional graphics

library and is the most widely used today. In addition, the Open Toolkit (OpenTK) is

used as a low-level C# library that is a wrapper for OpenGL (OpenTK, 2008).

6.2.2 Environment

The system’s fundamental components are terrain, agents, and buildings. The system is

intended to simulate the gradual development of human settlements based on

topographical information as a primary input. The system assumes that the development

starts from unoccupied empty terrain, and wandering settlers’ behaviors are simulated by

the computational agents. The buildings and streets (trails) will be gradually inserted by

the agents as a part of their behaviors.

1) Terrain Generation

Chapter 6: Application of Self-organizing Computation

200

Landform is a key original input for the system. Geometrical conditions of landscape are

described as a grid of triangulated patches. I set up a uniform grid of point locations in an

xy-plane based on user-selected grid size as an interval between adjacent points. Only the

heights for each point location vary, according to the terrain that is under consideration.

This setup can produce homogeneously gridded cells on a terrain surface, and later it

becomes easier to record activities at local conditions of a surface using equally divided

cells. These cells, or patches, can store local information about traffic intensity of agents

(settlers) and local acuteness of a terrain (slope) at the cells. The terrain under

consideration can be produced by the system using the random midpoint displacement

method as an artificially created test sample surface, or it can be imported from any

geometry from an external environment by using the following features.

2) Importing Surfaces

The system can import any surface geometries created inside of any CAD software

environment as long as they are saved in the DirectX (.x) file format. DirectX is one of

the standard file formats for meshed surface geometries developed by Microsoft

Corporation. The X-file contains information for all vertices, surface normal vectors at all

vertices, faces, and textures on the faces in a Cartesian coordinate system. My system can

read this information and recreate the geometry using a user-defined model scale factor

and a grid size. Based on these two parameters, representation of an original surface can

be approximated by sets of triangulated patches in my system. In my system, choosing a

smaller grid size relative to a model scale will produce a higher resolution surface. The

vertices inside the DirectX file are not always arrayed in a uniform grid in the xy-plane,

Chapter 6: Application of Self-organizing Computation

201

so the system alters the locations of vertices based on the user-defined grid size while

maintaining the original geometry of the surface. This feature allows users to import any

topographic conditions created or found from any other software environments, such as

Google Earth. Google Earth has become a good source for topographic information on

existing sites, and its geographical information can be exported to X-file format through

several different CAD software applications, including SketchUp and Rhinoceros. The

system can also save states of the environment separately. Information for the states

includes agents’ locations, generated buildings and streets, the current state of traffic

intensity at the site, seed numbers used for the random number generators, and so on.

3) Random Midpoint Displacement Method

Besides the above importing feature, I have prepared a terrain generator that can provide

an artificially created terrain using fractal geometry. This functionality promptly

produces a sample test surface that can give an impression of natural terrain, and a global

geometry of the output surface that is to some extent controllable by defining the

locations of a few initial seed points. I used random midpoint displacement method to

generate fractal geometry. At first, this method produces midpoints using the initial seed

points. For example, seed points can be four corner points or a grid of points at uniform

intervals in an xy-plane with various heights. I set the random number range and generate

random numbers in that range. Then the method displaces the heights of those midpoints

by those amounts. The method repeats this process recursively until it satisfies a

resolution of the specified grid size. One key factor here is that the range of random

numbers needs to be updated based on a certain rate per generation as we apply this logic

Chapter 6: Application of Self-organizing Computation

202

recursively. I reduced this range in proportion to the generation to maintain the natural

impressions provided by fractal images.

 Generation0: 8 x 8 pts Generation1: 16 x 16 pts

 Generation2: 32 x 32 pts Generation4:128 x 128 pts

Figure 6.4 – Fractal Noise: Terrain with various degrees of noise.

4) Noise Functions

Some geographical information from external environments does not provide sufficient

terrain detail. For instance, surfaces from Google Earth may not provide enough detail for

the scale and resolution we want. Some imported surface geometries lack such details and

often look overly smooth or overly rough. I have designed two noise functions that can

add some realistic irregularities to those imported geometries. These functions apply

irregularities in local scale while maintaining a global geometrical condition of an

original input. Regardless of the global geometry, agents’ (wandering settlers’) behaviors

are influenced by local conditions of a terrain, and slight perturbations in landform may

cause different results for street and building generation by agents.

Chapter 6: Application of Self-organizing Computation

203

The first noise function simply uses random displacements for heights of vertices forming

a triangulated surface. But the range of this random displacement is carefully set within

the range of a given original surface height, so that the result can still maintain the overall

characteristics of the original surface.

The second noise function uses the aforementioned midpoint displacement method on a

given surface with a user-specified interval distance for the sampling of the original

surface vertices. This method uses interpolation of points between the points that are

specified by users. The use of the fractal geometry is advantageous due to its natural

impression; however, this method skips some of the original source points when it

interpolates new points. Hence, it is a trade-off between retaining accuracy to original

information and producing a realistic appearance. Some original source terrains are

deficient in detail, and fractal noise is a good solution for these cases.

6.2.3 Agents as Wandering Settlers

The original environment of the system is completely vacant: unoccupied. The first

settlers arrive at a site from some distance away, at some point in its history. Some

settlers might be merely passing by the site, but some may settle down somewhere inside

the site. As more settlers migrate through the site, trails gradually emerge. Along these

trails, people find preferred locations for their shelters and begin settling down to form

clusters of dwellings. Some trails start to bundle together to form arteries, and some

branch out to form a complex network of passages. At this stage, settlers are no longer

randomly wandering migrants seeking temporary shelter. Instead, they act as

Chapter 6: Application of Self-organizing Computation

204

heterogeneous self-driven agents based on clear objectives of their own and travel

through these newly emerging cities. Spatiotemporal developments of the site are

organized by the settlers’ behaviors; however, the environmental changes induced by the

settlers also simultaneously influence their behaviors. This co-evolutionary development

between the settlers and the environment is one of the unique characteristics of the

system. In this section, characteristics of agents are explained in the following sub-

sections: time scale, attraction to slope, slope definition by agents, traffic intensity and

chemical trails, chemical-reduction rate (decay rate), diffusion rate, attraction to

destinations, and direct path systems.

Figure 6.5 – Agents traveling on a wire-framed terrain. Colors indicate frequencies of traffic.

Chapter 6: Application of Self-organizing Computation

205

1) Time Scale:

The system has its own scale of time, and it advances its world using discrete time

stepping. This is a typical strategy for time-based computer simulation. As seen in

Chapter 4, finite difference methods or Euler methods use the same concept of discrete

time stepping. Cohesion between the unit time frame of the system and time in the real

world is not strictly defined at this stage in the software’s development. Scales of time

and space have become a critical issue for the project, and one that seemingly can be

understood only empirically by comparing the results with actual precedents. I revisit this

issue at the end of this chapter.

Settlers are implemented as computational agents in the system. Agents can freely move

inside the given environment, yet their movements are restrained on the surface of the

terrain within the boundary of the surface. Each agent possesses its own location in a

Cartesian coordinate system, and a function to derive a height surface value on the z-axis

relative to an agent’s x and y coordinates is provided. Agents also possess their ages and

their steering directions as heading vectors. Their walking speeds are set based on the

terrain surface’s unit grid size. In other words, this grid size is the factor to determine the

scale of terrain relative to the size of an agent/walker. Later in the chapter, various factors

affect this heading vector and influence development of the world inside the system

through the agents’ behaviors.

Chapter 6: Application of Self-organizing Computation

206

2) Attraction to Slope:

Agents are initially equipped with a cone of vision and some level of perception of local

terrain conditions. This includes the ability to perceive local steepness of the terrain and

intensity of the traffic at the current agent’s position. These characteristics will be

explained in detail in a later section. Since there is nothing but the landscape at the outset

of the process, their movements are simply influenced by the local conditions of the site.

3) Slope Definition by Agents:

When agents calculate the slope of a surface in the direction they are heading, how local

this measurement needs to be is a critical issue for the resulting trajectories of agents.

Even though some surfaces may have a relatively flat profile overall, they might have

bumpy textures locally. Or, vice versa, a smooth local surface might be part of an overall

hilly landscape. I defined a parameter called slope-distance for the agent. “Slope-distance”

defines the point of measurement from an agent’s current location. A larger slope-

distance value allows agents to apprehend the overall profile of a slope, and a smaller

value gives a more myopic view of a slope. There are several ways that agents perceive

slope conditions. One is simply using a fixed slope-distance for all measurements.

Another approach is to measure slopes at a certain interval up to a selected maximum

distance from an agent’s current location, and the result is gained by averaging these

measurements. This approach is one way to avoid the measurement of a slope being too

specific to a certain fixed scale. A third approach is to measure slopes between points at a

certain interval along a heading direction of an agent, and the result is gained by

averaging these measurements. This approach measures the smoothness of not only the

Chapter 6: Application of Self-organizing Computation

207

immediate slope but also the sequence of a potential trip in the heading direction of the

agent. However, this does not measure slopes relative to various scales.

Figure 6.6 – Different ways to perceive slopes by agents. (ࢋ࢜࡭. ࢋ࢒ࢍ࢔࡭ ൌ ࢔ࣂାڮ૛ାࣂ૚ାࣂ
࢔

)

The selection of a heading direction is as follows. An agent has the ability to detect local

slope of the terrain in all directions around itself, and agents have a “maximum tolerable

slope” angle that they can walk on. If the angle of slope is steeper than the maximum

value, agents will avoid this direction. Agents compare slopes in all directions in the

specified range of the heading direction angle and select the direction with the least steep

slope: gentle slope. If all checked directions have relatively similar slope angles, then the

agent chooses a randomly selected direction. Once the direction is set, it steps forward

and checks the slope angles again at its current new location. Iterating the preceding

procedure forms an agent’s ambient movement pattern.

void Agent-Step-slope(){

//Check slope within -45 to 45 heading range using
//slope-distance. Choose the least steep direction
If (all directions have relatively same slope)
 Randomly select a direction from a range;
If (least slope > max-slope)
 Turn backward direction in random range;
Proceeds one step forward in selected direction;

}

The canonical agent’s gentle slope seeking algorithm

Ѳ1

Ѳ2

Slope-distance

Ѳ3

Ѳ2

Chapter 6: Application of Self-organizing Computation

208

4) Traffic Intensity: Chemical Trail

The terrain is subdivided by the aforementioned grid size, and in this system, the

frequency of agents passing through each subdivision of a surface are recorded and stored

inside a two-dimensional array variable called “chemical intensity.” Use of the term

“chemical” originates by analogy with ant foraging behavior using pheromones, and this

part of the algorithm of the system was inspired by the ant colony optimization (ACO)

technique (Dorigo, 1992). As more agents pass over any given surface area, this

location’s chemical intensity becomes higher. Agents release chemicals with a certain

rate called chemical-rate and the rate is set to 0.001 at the beginning. The system can

display these values from each subdivision surface visually by graduation of color tone

from red (denoting high) to blue (denoting low). Hence, the red area on the terrain

indicates an intensive traffic area (high frequency of path use) and becomes an area of

potential population concentration. This method can represent a network of passage ways

with raster-based graphics (instead of vector-based graphics). Raster-based methods are

well suited for representing gradual emergence or extinction of passages in a time series.

By contrast, vector-based representation allows one to show only two states, existence or

non-existence; raster-based representation can represent degrees of intensity.

Figure 6.7 – Agent’s cone of vision and chemical value checking mechanism.

Chem.val=Highest

0.6

0.5

0.5

0.3 0.5

Chemical-distance

Ѳ

Chapter 6: Application of Self-organizing Computation

209

As agents gradually find more comfortable routes to walk on based on the above

evaluation of slopes, some areas of surface are more likely to be used by the agents as a

trail. Using the traffic intensity of the agents, one can visually recognize the emergence of

paths. Once these trails have become visible, there will be a shift in agents’ behaviors.

They no longer need to find their immediate next moves in momentary fashion. Instead,

they can recognize some of the paths that are more used by others and become attracted

to these popular routes. This behavior accelerates the use of specific circulation paths,

and eventually triggers the production of streets and arteries.

void Agent-Step-chemical(){

//Check chemical level around an agent
float valbest =0;
float dircbest=0;

 //Look at -60 to 60 degree range using Max-chemical-dist
foreach(-60 < dirc < 60){

 for(int i = 1; i <= MaxChemdist; i++){
 value += CheckChemical(dirc, i)*(1/MaxChemdist);
 }
 If(value > valbest){
 Valbest = value;
 dircbest= dirc; }
}
//Choose the direction heading the most frequently
used patches;
Proceeds one step-forward(dircbest);

}

The canonical agent’s chemical-seeking algorithm

Similar to the way agents perceive the local steepness of the terrain, agents have a cone

of vision to evaluate chemical intensities in their neighborhood areas. Maximum-

chemical-distance is the parameter used to define the size of the cone of vision to

measure the intensities. In each direction within the range set by the angle of the cone of

vision, an agent checks values of intensities at every subdivision surface by incrementing

the distance from its position until it reaches the maximum-chemical-distance. These

values of intensities are accumulated and compared per direction. The direction that

Chapter 6: Application of Self-organizing Computation

210

scores the highest intensity value is selected as an agent direction vector, as the direction

has been the most heavily used among all other directions.

The difference between chemical intensity values and slope values is that the

measurement of chemical values is cumulatively executed, whereas slope measurement

can be executed at the discrete fixed distance from each agent. (The slope measure can be

executed cumulatively by setting a maximum distance for the measurements.)

5) Chemical-reduction Rate (Decay Rate)

This chemical value is a dynamic variable of a terrain surface and changes during the

course of development. There is a chemical-reduction-rate (decay rate) for this value.

Sites of intense traffic or population concentration can shift and move during this

development. Trails that were once heavily used but no longer are may disappear. If trials

are left unused for long periods of time, their attractive forces will gradually diminish.

The system advances every finite step of time, and for every step of simulation in time,

the reduction rate is applied to the intensity value of all subdivision surface areas. The

chemical-reduction-rate of 1.0 is a constant condition where no trail disappears once it

has been created. A chemical-reduction-rate of 0.9 means that the traffic intensity of

every position will be reduced at the rate of 0.9 per discrete time step. For example, later

in this chapter, I will introduce cases where trails gradually change their topologies in

order to avoid steep slopes, thereby producing detours. (The chemical-reduction-rate is

analogous to an evaporation rate of pheromones in ant foraging behavior, and in

computational interpretation of this behavior, ACO uses this value as well [Dorigo, 1992].

Chapter 6: Application of Self-organizing Computation

211

P1 P2 P3

P4 P0 P5

P6 P7 P8

6) Diffusion Rate

 The trails of agents are represented as nested values of subdivided terrain surfaces

(patches). In reality, these agents represent human pedestrians, and traces of trails can be

suspected by agents at locations near these trails. These traces are perceptible by agents at

adjacent patches. In order to implement this characteristic, the chemical intensity of

patches diffuses into immediately neighboring patches at a specific rate of diffusion. If

the diffusion rate is 0.03, the original chemical value of a patch is multiplied by 0.03 and

added to the patch’s eight surrounding patches in a single time step. This operation

transmits original trails’ chemical effects to nearby regions, and attracts others in the

region.

૙ࡼ ൌ ૙ሻࡼ ࢚ࢇ ࢋ࢛࢒ࢇ࢜ ࢚࢟࢏࢙࢔ࢋ࢚࢔࢏ ࢉ࢏ࢌࢌࢇ࢚࢘૙ ሺ࢒ࢇ࢜

࢏ࡼ ൌ ࢏ࡼ ൅ ૚
ૡ

כ ࢒ࢇࢉ࢏࢓ࢋࢎࢉࡾ כ ࢏૙ ሺ࢒ࢇ࢜ ൌ ૚, … , ሻ࢔
࢒ࢇࢉ࢏࢓ࢋࢎࢉࡾ ൌ ࢋ࢚ࢇࡾ ࢔࢕࢏࢙࢛ࢌࢌ࢏ࡰ

Figure 6.8 – Process of Chemical Diffusion and a diagram.

7) Attraction to Destinations:

The preceding concepts, slope and traffic intensity, are locally defined evaluation factors

for agents’ heading directions. Nevertheless, the factor that attracts agents’ headings can

be globally defined as well. Providing stationary points of destinations for an agent’s trip

is one way to accomplish this. These destination locations can be defined from the

beginning, or can emerge later based on the gradual growth of the system itself. A

destination can be a point of population concentration such as a city center. Destination

Chapter 6: Application of Self-organizing Computation

212

locations are remotely located coordinate points that are stored inside each individual as

predefined knowledge. They can be recognized without using any of the previously

mentioned sensing features. An agent’s heading direction vector can be simply derived

by defining a unit vector from an agent’s current position to a destination location. This

straight line between an agent and a destination forms the shortest path between two

points. When agents tour around several destination points one by one, and if they are

directed only by attraction to these destinations, agents’ trajectories will form a direct

path system.

void Agent-Step-destination(){
//get vector from agent position to dest-city
If (no destination)
 Vector3 Vdest = (0, 0, 0);
If (destination exists){

Vector3 Vdest =
 (Cities[Agent.dest].position – Agent.position);
Vdest = Vdest.normalize();

 }//Proceeds one step forward in selected direction;
Agent.position += stride*Vdest;

}
The canonical agent’s destination-seeking algorithm

8) Direct Path Systems:

A direct path system is produced if each point is linked to another via the shortest

distance or route (Schaur, 1991). In this system, a direct path emerges as a result of

global configuration if agents are only directed by their attraction to destination points.

Here, I would like to note that it is not necessary for the system to impose any knowledge

external to the system to achieve a direct path.

So far, I have reviewed three primary factors that govern agents’ heading direction

vectors. The three primary factors are attraction to gentle slope, attraction to traffic

Chapter 6: Application of Self-organizing Computation

213

intensity, and attraction to destinations. From this point on, these three factors will be

focused on as primary motivations for agents’ physical movements. They can be

independently applied to each agent, but they can also be applied together simultaneously

to each agent by assigning different weights for each resulting directional vector for the

three different attractors. These three weight factors are named slope-factor (s-factor),

traffic-intensity-factor (t-factor), and destination-factor (d-factor).

ൌ ܜܖ܍܏܉܄ ࢙ כ ൅ ܍ܘܗܔܛ܄ ࢚ כ ൅ ܋ܑ܎܎܉ܚܜ܄ ࢊ כ ݏሺ ܜܛ܍܌܄ ൅ ݐ ൅ ݀ ൌ 1.0; 0 ൑ ,ݏ ,ݐ ݀ ൑ 1.0ሻ

A normalized sum of three vectors weighted by the above-mentioned factors produces the

heading vector of an agent. By manipulating the proportions of these three factors, agents’

behaviors can be directed. For example, weight factors of s=0, t=0, and d=1.0 would

produce a direct path system among selected destination points for agents. These values

are also dynamically changeable parameters based on changing environmental potentials.

In the following section, a simple model with d-factor and t-factor will be looked at, and

later I would like to introduce s-factor into this base model.

void Agent-Step(){
 Vector3 Vdest = Agent-destination-vector();
 Vector3 Vtraffic = Agent-chemical-vector();

Vector3 Vslope = Agent-slope-vector();

 // FORMULA //

Vagent = S_factor * Vslope + T_factor * Vtraffic + D_factor * Vdest ;
Vagent = 0.05(stride) * Vagent .normalize();
Agent.position += Vagent ;

}

The canonical agent’s step-forward algorithm

Chapter 6: Application of Self-organizing Computation

214

L

L

L

0.577L

Total Length = 3L
Single trip length = L

Total Length = 0.577*3L (‐42%)
Single trip length = 1.154*L (+15%)

0.577L

Total Length = 0.6*3L (‐40%)
Single trip length = 1.1*L (+10%)

6.2.4 T + D Model

 In this section, I select three predefined stationary points as destination points for agents

in a completely flat environment (3 cities). This configuration creates a triangle on an

open, level plane, and agents will tour around these three points at the vertices of an

isosceles triangle. Agents possess a single destination point at a time, and once they reach

that destination, a new destination will be randomly assigned from among the remaining

destination points. This is a strategy to make virtual itineraries for agents. With this

simple setting, various different values for parameters are used to study different

configuration results: chemical-reduction rate (decay rate), diffusion rate, maximum-

chemical-distance, t-factor, and d-factor.

 Direct paths In-between Minimal ways

Figure 6.9a – Simulation on 3 Cities: Transition from Direct paths to Minimal ways

Chapter 6: Application of Self-organizing Computation

215

Figure 6.9b – Simulation on 3 Cities with various parameter settings.

Chapter 6: Application of Self-organizing Computation

216

Figure 6.9a and b shows the resulting configurations per different parameter settings. I

used an agent population of 200 for this experiment. The chemical-rate for agents was set

to 0.001, and the diffusion rate was fixed at 0.02. A decay rate of 0.995 caused saturation

of traffic intensity in the system. The environment literally became all red due to high

traffic intensity values at each cell, and agents’ movements did not converge. This is

because accumulation of chemicals by agents and diffusion of chemicals based on the

rate exceeded the rate of evaporation of the chemical. Reducing the decay rate to 0.985

helped the system maintain traces of trails. (Otherwise all traces disappear if the decay

rate is too low.)

1) Minimal Way Systems

Next, I started incrementing the t-factor from 0.0. In the case of t=0.0 and d=1.0, I

observed a clear triangle forming, comprising the direct paths between the three vertices.

Reducing the decay rate from 0.990 to 0.985 produced sharper edges on the triangle.

When the t-factor value exceeded the d-factor value, the triangle started to deform, and

paths that once met only at the vertices started to bundle together and merge. As a result,

at t=0.575, the triangle started to shrink toward its center (see Figure 6.9). At t=5.63, all

edges of the triangle merged together and formed into a three-legged starfish-like shape.

More agents are attracted to frequently used trails, and agents gravitated toward the

center of the triangle. This resulting starfish-like configuration forms a minimal way

system (Schaur, 1991). A minimal way system provides a 57.7% shorter overall road

length than a direct path system. (Note: This percentage refers to this specific setting.) In

return, every agent must take about a 15.5% detour of added distances between cities

Chapter 6: Application of Self-organizing Computation

217

compared to a direct path. Schaur (1991) found that many existing road patterns exhibit a

minimal way structure. An increase in traffic intensity factor (t-factor) becomes an

incentive to form a minimal way system from a triangle-shaped direct path system. A

shorter total distance of a system is economical in terms of construction costs of roads.

Longer distances for each trip are compensated by shorter distance of entire length in a

minimal way system.

In addition, the above results are all obtained when chemical distance is set at 6 grid units

of the environment. (The size of the triangle formed by three cities has a 45-unit-length

width and a 45-unit-length height.) The chemical distance governs an agent’s maximum

distance to detect traffic intensity. By reducing the chemical distance to 3, I could not

obtain a minimal way system from any of the above parameter setting combinations

listed in Figure 6.9.

It should be noted that these simulations of trail formation using multiple agents are a

rather time-consuming process. The emergence of a minimal way path usually takes

about 5 to 10 minutes of simulation time for the simple triangle configuration. As

described later in this chapter, I conducted more complex simulations, and they required

over an hour of simulation time. Agents’ trails usually start from a direct path because

there are no traffic intensity values embedded in the terrain at the outset. Agents gravitate

toward more active areas of terrain and gradually form a new configuration such as a

minimal way that corresponds to a programmed set of behaviors implemented on a group

of agents.

Chapter 6: Application of Self-organizing Computation

218

Schaur (1991) has investigated empirical precedents of the above observable facts about a

minimal way system. Schweitzer (1994) and Helbing et al. (2002) have done

computational simulations using their “active walker model” and simulated the above-

mentioned occurrences of a minimal way system in their papers. Helbing et al. noted that

their model’s trail formations depend on one independent parameter in their

dimensionless equation ݇ ൌ ଶߪ/ܶܫ where ܫ represents the intensity of footprints by

pedestrians, ܶ the durability of trails, and ߪ the visibility of a place.

This result implies that the emergence of street networks among humans is not all

motivated by efficiency based on travel distances. Although a minimal way system is not

as efficient as a direct way system, it provides a different connectivity and topology of

the networks. A mid-point of star-fish shape becomes a convenient point for connections

between three other cities and promotes emergence of another city (population

concentration area) at the location. If travelers would like to maintain options for their

travel routes until they reach the midpoint, this is a good layout, too. Later, I implement

emergence of cities based on traffic intensity, and this is a good example of a new city

emergence pattern often seen in many human systems.

Figure 6.10 – Emerging Trail Patterns

Chapter 6: Application of Self-organizing Computation

219

D=1.0 T=0.0 S=0.0
Total Length = 6.828L
Single trip = 1.138L

D=0.38 T=0.62 S=0.0
Total Length = 2.828L (‐59%)
Single trip = 1.414L (+24%)

D=0.5 T=0.5 S=0.0
Total Length = 3.546L (‐48%)
Single trip = 1.382L (+21%)

D=0.045 T=0.125 S=0.83
Total Length = 13.5L (+97%)
Single trip = 1.566L (+37%)

Hilltop

Valley

Hilltop

L

1.414L

6.2.5 S + T + D Model

 Direct paths Minimal ways

 In‐between Detours

Figure 6.11 – 4 Cities on uneven terrain: Transition among direct paths, minimal ways, & detours

In this section, I would like to integrate the concept of slope-factor into the above T + D

model. Models using attraction to traffic intensity and destinations have been studied by

several scholars; however, to my knowledge, a model implementing pedestrian agents’

attraction to gentle slopes has not been explored.

Chapter 6: Application of Self-organizing Computation

220

For this model, four cities are defined at vertices of a square in a plan view, and agents

will tour around these cities. The major difference from the last T + D model is that the

environment is located on an uneven terrain. There are hills on the top and bottom sides

of the square and valleys on the left and right sides of the square. The path between any

two cities thus requires agents to encounter a hill or valley. As I described earlier in this

chapter, agents’ heading vector, ܸ݁݌݋݈ݏ, is defined by slope and always tries to maintain a

gentler slope direction for agents, and s-factor is the weight that defines a proportion of

this directive force vector relative to the two other vectors, ܸ݂݂ܿ݅ܽݎݐ and ܸ݀݁ݐݏ affected by

their own factors t and d. Derivation of ܸ݁݌݋݈ݏ involves two parameters, maximum-slope-

angle and slope-distance. Simulations are carried out using various proportions for the

three factors, s, t, and d, and two slope-related parameters.

The results were the same while s-factor stayed at 0.0, and transition between a direct

path and a minimal way was observed as I increased the proportion of t-factor relative to

d-factor (see Figure 12). If s-factor is large, agents start to choose more comfortable paths

by avoiding peaks and beginning to detour. In the case of d=0.045, t=0.125, and s=0.83,

agents produced detours around the two peaks by maintaining altitudes in a relatively

narrow range. Use of the s-factor has become an incentive for agents to produce paths

along contour lines on surfaces. Use of a high s-factor also diminishes attraction to

destinations, and trails tend to diffuse and get wider as a result. In the case of d=0.38,

t=0.62, and s=0.0, a minimal way system emerges. If the d and t factors stay the same and

the s-factor increases, a compromise results between ease of walking and overall path

distance.

Chapter 6: Application of Self-organizing Computation

221

Figure 6.12a – 4 Cities on uneven terrain: Results with various values for S, T, and D factors.
D is set as a constant value 1.0 above. (Actual D value in percentage =D/(D+S+T)*100)

Gradual Development of Passages ‐‐‐‐>

Chapter 6: Application of Self-organizing Computation

222

Figure 6.12b – 4 Cities on uneven terrain: Results with various values for S, T, and D factors.
D is set as a constant value 1.0 in these cases. (Actual D value in percentage =D/(D+S+T)*100)

Gradual Development of Passages ‐‐‐‐>

In

an

p

in

an

at

nstead of usi

nd hilly terr

oints makes

nterrelationsh

nd three fact

t arbitrary lo

Figure 6

ing the regul

ain are selec

s simulation

hips betwee

tors for agen

ocations to 8

6.13 – Topolo

lar four corn

cted as cities

n results m

en three con

nts’ behavior

and 9. Figu

ogical represe

Chapte

ner points on

s in the next

more unpred

nfigurations

rs (t, s, and d

ures 14a to 1

entations of 4

er 6: Applicati

n a square, fo

t simulation

dictable. Ho

(direct path

d). Later, I in

17d show the

cities with va

ion of Self-orga

four arbitrary

(Figure 14).

owever, I g

h, minimal w

ncreased the

e resulting co

arious parame

anizing Compu

y points on r

. Use of arbi

gained the

way, and de

e number of

onfiguration

eter settings.

utation

223

rough

itrary

same

etour)

cities

ns.

Chapter 6: Application of Self-organizing Computation

224

Figure 6.14 – 4 cities at arbitrary locations on uneven terrain with various S, T, D factors.
D is set as a constant value 1.0 above. (Actual D value in percentage = D/(D+S+T)*100)

Gradual Development of Passages ‐‐‐‐>

Chapter 6: Application of Self-organizing Computation

225

Gradual Development of Passages ‐‐‐‐>

Figure 6.15a – 9 cities on Arbitrary locations on uneven terrain with various S, T, D factors.
D is set as a constant value 1.0 above. (Actual D value in percentage = D/(D+S+T)*100)

Chapter 6: Application of Self-organizing Computation

226

Figure 6.16 – 8 cities with various parameter settings displaying different topologies.
Figure 6.17a – d: – show gradual growth sequences based on different parameter settings (next
pages)

Chapter 6: Application of Self-organizing Computation

227

 8
C

it
ie

s:
 G

ra
d

u
al

 G
ro

w
th

 P
ro

ce
ss

es
 o

f
S

tr
ee

t
N

et
w

or
k

s.

Chapter 6: Application of Self-organizing Computation

228

 8
C

it
ie

s:
 G

ra
d

u
al

 G
ro

w
th

 P
ro

ce
ss

es
 o

f
S

tr
ee

t
N

et
w

or
k

s.

G
ra
du

al
 D
ev
el
op

m
en

t o
f P

as
sa
ge
s.
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

229

 8
C

it
ie

s:
 G

ra
d

u
al

 G
ro

w
th

 P
ro

ce
ss

es
 o

f
S

tr
ee

t
N

et
w

or
k

s.

 G
ra
du

al
D
ev
el
op

m
en

to
fP

as
sa
ge
s.

‐‐
‐‐
‐‐
>

Chapter 6: Application of Self-organizing Computation

230

 8
C

it
ie

s:
 G

ra
d

u
al

 G
ro

w
th

 P
ro

ce
ss

es
 o

f
S

tr
ee

t
N

et
w

or
k

s.

G
ra
du

al
 D
ev
el
op

m
en

t o
f P

as
sa
ge
s.
 ‐
‐‐
‐‐
‐>

S

T

av

d

a

m

d

co

pr

b

co

W

H

lo

n

d

in

F
E
(f

Summary o

The high valu

voiding clim

-factor (dest

direct path

minimize ove

estinations,

onstruction

roportions to

iggest merit

onfiguration

When numb

However, de

ocations on

ecessarily th

eriving stre

nformation.

Figure 6.18 –
Emergent Tra
from next sec

of the Res

ue for s-facto

mbing or des

tination) ind

h system. T

erall length

shorter ov

costs of ro

o find comp

ts of the sys

n without req

ers of citie

eriving a str

irregular te

he fastest m

eet configur

ails
ction)

sults

or (slope) in

scending a st

duces agents

The high va

of circulatio

verall length

oads. These

promise solu

stem is that

quiring any m

es are smal

reet configu

errain geom

method of de

ration as i

Chapte

nduces agent

teep hill, age

to find the s

lue for traf

on. When a

h of the sy

three facto

utions among

purely micr

macroscopic

ll, resulting

uration from

metry is a ch

erivation, bu

t only requ

er 6: Applicati

ts to find a c

ents produce

shortest path

ffic-intensity

gents have m

ystem is b

ors can be

g three diffe

roscopic beh

 information

configurati

m a large nu

hallenge. M

ut it is a re

uires micro

ion of Self-orga

comfortable w

e detours. Th

h. As a resul

y-factor stim

more freque

beneficial du

applied in v

erent motivat

haviors can p

n to be input

ions are ra

umber of c

Multi-agent s

easonably ro

oscopic beh

anizing Compu

walking path

he high valu

t, agents pro

mulates agen

ent trips bet

ue to its l

various diff

tions. One o

produce a g

into the sys

ather predict

ities at arbi

simulation is

obust metho

haviors as

utation

231

h. By

ue for

oduce

nts to

tween

lower

ferent

of the

global

tem.

table.

itrary

s not

d for

input

Chapter 6: Application of Self-organizing Computation

232

6.2.6 Emergent Behaviors of Agents

Experiments in the last section have fixed agents’ behaviors throughout the simulations.

In the following section, I would like to consider shifts in agents’ behaviors stimulated by

environmental changes.

1) Early Periods

Firstly, I focused on slope-factor and traffic-intensity-factor. I chose a randomly

generated terrain by mid-point displacement method and started the simulation with 200

agents with only attraction to gentler slopes. However, I set the agents’ behaviors to shift

after the entire terrain’s total traffic-intensity value exceeds a certain minimum. An

original state of the site is assumed to have no trails and no trace of human settlement.

Once an entire environment’s activity level reaches a certain maturity, agents start to rely

on information that already exists in environments. Agents start to follow higher traffic

frequency areas instead of trails that no one has been taking. From the original part of the

simulation, agents have already left better pathways in terms of terrain slope, and by

selecting more frequently used paths, agents can avoid steep and undesirable paths. This

phase change in agents’ behaviors motivates emergence of sharply outlined passage ways

on the terrain. I tested the results with different values for agents’ extended vision for the

slope (slope-distance from 1.0 to 5.0 unit distance of the environment). Figure 20 shows

gradual appearance of street networks. The terrain has two steep hilltops at the south and

north, and detours around these hilltops are recognized from the results. The results are

highly influenced by the slope-distance value. A finer and more intertwined network of

passage ways covering higher regions of hills is recognized as I increase the slope-

Chapter 6: Application of Self-organizing Computation

233

distance value. Some of the passage ways have consistently appeared regardless of the

slope-distance value, and these indicate the emergence of possible artery systems for the

region.

The threshold value that triggers the agents’ behavioral phase change was carefully

chosen. If the value is too low, the entire site’s recorded frequencies of traffics are too

premature and too biased by a seed value of a random generator that defines agents’

ambient movements. As the number of terrain patches that possess traffic intensity value

of over 0.8 exceed 15% of the total number of patches, agents start to check the traffic

frequency around them to make decisions about their heading directions. (Chemical-rate

of agents is set to 0.001. In order to reach 0.8, agents need to pass this patch 800 times.)

In the case of this specific example of terrain with two humps, the above condition was

satisfied when an average intensity value for patches reached 0.15. Instead of looking at a

pure average value as a threshold, I used the proportion of eccentric conditions in order to

execute the behavioral change. This decision was empirically made based on results from

many different threshold values. Even if the overall average value becomes high, this fact

does not always guarantee the maturity of data from agents’ movements.

 Figure 6.19 – Emergent Trails
 Figure 6.20 – Growth Process (next page)

Chapter 6: Application of Self-organizing Computation

234

Chapter 6: Application of Self-organizing Computation

235

Figures 6.21 – Gradual Emergence of Trails (previous page); Results with various slope-distance
parameters for agents.

Chapter 6: Application of Self-organizing Computation

236

2) City Emergence

After the emergence of street networks, agents’ movements become much more ordered

and organized. Some of the intersections of several arteries become population

concentration areas, and these areas have the potential to grow into cities. As the number

of terrain patches that possess traffic intensity value of over 0.8 exceed 18% of the total

number of patches, the system starts to check for and find traffic-intensive areas. This is

the same threshold that triggers agents’ behavioral shifts. However, this new action

occurs after the emergence of street networks. The algorithm finds peak areas of traffic

intensity value above a certain threshold value (0.9 was used), and finds places where

these peaks are forming clusters. Traffic-intensive patches that are within a certain

distance from each other are read as one island. If these islands are larger than a certain

minimum size, they are considered as city areas. Within these city areas, the highest

traffic intensity peak location becomes a city center. If a city area has more than one peak

and if they are beyond a certain distance apart from each other, the city area can have

more than one city center. These values – a minimum size of an island and a minimum

distance between city centers – are parameters that users need to define. After sufficient

careful trials, numbers that produce results that represent a natural scale of development

relative to the scale of terrain are empirically adopted. The scale of the system and the

scale of the input information is a critical issue that I would like to discuss again later in

this chapter.

Procedure city-Emerge(){

// check if environment is mature enough.
If (Total intensity of traffic exceeds a minimum threshold)

// extract peaks
 Peaks[] = SearchPeaks();

Chapter 6: Application of Self-organizing Computation

237

 // create sub-cities by grouping peaks within Min-distance
 foreach(peak1 & peak2 in Peaks[]){
 If(distance(peak1, peak2)< Min-Dist)
 Subcities[].add(peak1, peak2);
 }
 // select sub-cities with sizes over Min-Number-of-City

foreach(Subcities[]){
 If(Subcities[i] > MinNumCity)
 Cities.add(Subcities[i]);
 }
 // extract city center points from Cities

foreach(Cities[]){
 //

 for(Cities[i].count)
 If(Cities[i] has only 1 peak)
 Destinations.add(Cities[i].peak);
 If(Cities[i] has more than 1 peaks)
 foreach(j in Cities[i].peaks)
 If(peaks are MinDistCity away){
 Destinations.add(Cities[i].peaks[j]);
 }
 Else(peaks are all within MinDistCity){
 pkBest=(select highest-peak from peaks);
 Destinations.add(pkBest);
 }
 }
 }

Return Destinations[];
 }
}

The canonical algorithm for the city center points extraction

3) Itinerary for Agents

Once cities are registered by the system, all agents will know about the locations of the

cities. Agents have one destination city at a time, and they head toward that direction.

This information about cities becomes global knowledge for agents. Unlike other

decision-making factors for agents, such as slope angles and traffic intensity, these are

globally defined relatively static information that affects agents’ behaviors; however,

these cities can become extinct or re-emerge from other locations. Over the course of

simulation, the system can recheck the traffic concentration areas to update information.

Once agents reach their current destinations, they will be assigned new destinations

Chapter 6: Application of Self-organizing Computation

238

randomly selected from the list of cities (excluding the most recent destination). If all

agents simply head toward their destinations, a direct path system emerges.

At the time of the emergence of the cities, the environment already has developed

networks of trails induced by agents’ behaviors. Even if there are newly defined

destinations, agents’ behaviors should be influenced by these existing trails. Some trails

may be roundabout in terms of distances to the destinations, but they may provide more

comfortable walking experiences. Establishing a newly defined pathway is also a

cumbersome task. As I mentioned earlier, agents’ heading directions can be controlled by

assigning different proportions of weights for each vector toward different attractors –

gentler slopes, traffic intensities, and destinations. Original trails before city emergence

are similar to a mountain trail as they are generated based on the relatively myopic views

of agents at the early stages of development of the organization as a whole. Locations of

the destinations are factors that emerged as a result of preceding developments; however,

their influence can impose more directly upon agents and their environments.

Different proportions of values for three factors – slopes, traffic intensity, and

destinations – were applied and various growth patterns of passage networks were

recorded. In case of S=0, T=0, D=1.0, a direct path connecting all the destinations

appeared. This is a relatively trivial result; however the gradual transformation from

mountain-trail-like complex paths to straight roads is quite dramatic.

Chapter 6: Application of Self-organizing Computation

239

See Fig.6.23-A
//DIRECT PATH
(T=0%; S=0%; D=100%)
Agent0.T_factor = 0;
Agent0.Slope_factor = 0;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0;

For the following cases, I recorded hybrids between a minimal way system and a detour.

See Fig.6.23-B
//GOOD
 (T=58%; S=0%; D=42%)
Agent0.T_factor = 1.35;
Agent0.Slope_factor = 0;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0.0f;

In the rest of the cases, balances among parameters – slope-factor, traffic-intensity-factor,

chemical-rate, decay-rate, and diffusion-rate – have become quite sensitive. For example,

the following parameter combinations cause saturation of traffic intensity inside the

environments, and literally turn all terrain red. This is mainly due to the balance between

decay-rate and diffusion-rate. These parameters are important for the generation of a

minimal way system.

See Fig.6.23-E
//TOO FAT RED
(T=10%; S=75%; D=15%)
Agent0.T_factor = 0.65;
Agent0.Slope_factor = 5;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0.001f;

See Fig.6.23-C
//GOOD
(T=46%; S=27%; D=27%)
Agent0.T_factor = 1.65;
Agent0.Slope_factor = 1;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0.0f;

//TOO FAT RED
(T=27%; S=42%; D=35%)
Agent0.T_factor = 0.65;
Agent0.Slope_factor = 1.2;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0.001f;

Chapter 6: Application of Self-organizing Computation

240

In the following cases, decay-rate was too fast compared to diffusion-rate, and eventually

all trails disappeared.

//BAD ALL BLUE
(T=43%; S=31%; D=26%)
Agent0.T_factor = 1.65;
Agent0.Slope_factor = 1.2;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.985f;
Primitive.diffusionRate = 0.002f;

See Fig.6.23-D
//TOO THIN BLUE
(T=27%; S=42%; D=35%)
Agent0.T_factor = 1.65;
Agent0.Slope_factor = 0.6;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.995f;
Primitive.diffusionRate = 0.002f;

 (Note: D is set as a constant value 1.0 above. (Actual D value in percentage = D/(D+S+T)*100))

Figures 6.22 – Gradual transformation of trails and city emergence.

//BAD all blue
(T=55%; S=43%; D=2%)
Agent0.T_factor = 25;
Agent0.Slope_factor = 20;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 1.5;
Agent0.MaxSlope = 0.8;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0.0f;

//BAD all blue
(T=17%; S=83%; D=0.1%)
Agent0.T_factor = 100;
Agent0.Slope_factor = 500;
Agent0.ChemRate = 0.012f;
Agent0.TransMoveS = 1.0f;
Agent0.slopeDistMax = 5;
Agent0.MaxSlope = 0.5;
Agent0.ChemMaxdist = 6;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0.0f;

B

Chapter 6: Application of Self-organizing Computation

241

Figures 6.23 – City emergence and street networks with various parameter values.

A

B

C

D

E

Chapter 6: Application of Self-organizing Computation

242

4) Building Behaviors

Buildings are also important components of the program. So far, I have not referred to

buildings, choosing to clarify each component concept one by one, but generations of

buildings are not separated from the other contexts of generations. In fact, generations of

buildings are assumed to be heavily inter-related with the generations of streets and

behaviors of agents. They all have to be part of the self-organizing computation.

Figure 6.24 – Developments in Mykonos, Greece, from the 17th to mid-20th century.

Buildings are treated as a separate class of object called “bldg” inside the system. Once

conditions for buildings to be erected are met, a bldg-object is instantiated at the location

and with the size that is specified. Emergence of buildings is dependent on environmental

potentials. Bldg-class objects have their own variable called age, and age-variables record

the duration of buildings’ life-time based on a discrete unit time scale of the simulation.

Buildings over one hundred years of age have a random rate of chance to disappear.

Chapter 6: Application of Self-organizing Computation

243

The environmental potentials are mainly frequencies of traffic and topographical

conditions of a terrain. The frequencies of traffic at each patch of the terrain are also

considered as an indication of population density of the area. In this system, the measure

of traffic intensity is based on how many agents pass that particular location of the patch

over time, and this value is reduced at a certain rate of decay if no agents pass the

location for a while. Thus this value can represent activity level of the site as well. When

this value is higher than a certain threshold value, the site is considered as a potential

location for buildings. In this system, when the site activity level exceeds a certain

minimal value (which is a dynamic threshold variable interrelated with the environment’s

overall growth), a building has a chance to be built at the site by a random probability.

This random probability is also influenced by the site’s activity level. (For example, the

probability for building generation exponentially increases as traffic intensity of a patch

gets higher.) The sizes of the buildings are defined by the activity level of the site. I used

a negative exponential function to define the height of buildings from the chemical value

of the patch. The negative exponential function restrains the growth of building height to

some upper bound number and seems to represent the variations of buildings’ heights

found in real-world settlements.

//Building generation based on Traffic Intensity
if (chemical-level >= chembldg){
 //Avoid slope Below 30degree
 if (getAngle(Surface.Normals[i][j], Vector3(0,0,1)) < 0.5){

 Bldg b = new Bldg(Surf.Vertices[i][j].x, Surf.Vertices[i][j].y);
 Form1.Buildings.Add(b);

 //for height of Buildings
 b.H = new Vector3(0, 0, logistic(ch) / 2.5);

 }
}

The pseudo-algorithm related to building generations.

Chapter 6: Application of Self-organizing Computation

244

//Building generation from Cities
foreach (CITY city in cities){
 //generate at random location within a unit dist.
 double x = city.pos.x + rand()*Cos(2*PI*rand());
 double y = city.pos.y + rand()*Sin(2*PI*rand());
 //Avoid slope Below 30degree
 if (Vector3.getAngle(Surf.Normals[x][y], Vector3(0,0,1)) < 0.5){
 Bldg b = new Bldg(Surf.Vertices[x][y].x, Surf.Vertices[x][y].y);

Form1.Buildings.Add(b);
//for height of Buildings
b.H = new Vector3(0, 0, logistic(ch) / 2.5);

 }
}

//Agent’s Behavior to kill buildings in the way
public void KillBuild(){
 foreach (Bldg b in Form1.Buildings){
 if (Vector3.dist(pos, b.pos) < 0.05){
 Form1.killlist.Add(b);
 }
 }
}

//BUILDING Behaviors
foreach (Bldg b in Buildings) {

if (time % 10 == 0){
b.age++;
b.step(); //Building-Align()and so on.
b.draw();

}
if (b.age > 100)

killlist.Add(b);
}
foreach (Bldg b in killlist) {

Buildings.Remove(b);
}

The pseudo-algorithm related to building generations.

Slopes of the site are another criterion for building sites. If the maximum slope of the site

is above a certain degree, it is quite likely that no settler is willing to build any structures

at such a steep slope. This maximum value can be dependent on regional tectonic cultures,

available materials and technologies, and climatic conditions. I set this to 30 degrees

based on conventional standards as a maximum slope angle for buildable areas.

5

A

is

se

p

g

n

bu

d

F
si

T

b

al

ro

th

5) Nego

After the env

s completely

ettlements a

athways of

enerated by

eed to disap

uildings alig

irect collisio

Figure 6.25 –
imulation usin

There are sev

asic behavio

lignment beh

otation angle

hemselves to

otiation be

vironmental p

y unoccupied

nd begin bu

agents; build

environmen

ppear (by lite

gn themselve

ons.

Aerial view
ng simple alig

veral other b

ors in terms

havior. Buil

e of other b

o the averag

etween Ag

potentials ar

d and deserte

uilding. The

dings will n

ntal potential

erally increa

es to agents’

of San Minia
gnment algori

building beha

s of produc

ldings look a

buildings wit

ge angle. Th

Chapte

gents and B

re met, build

ed. The first

locations of

negotiate the

l to be built r

sing their ag

’ heading dir

ato (Fanelli, 1
ithm by the au

aviors, some

cing realistic

around their

thin a certai

his is a self-o

er 6: Applicati

Buildings

dings start to

settlers start

f buildings s

ir locations

right at an a

ges). If they

rections and

1990) (left) a
uthor (right).

e of them no

c arrangeme

neighborho

in distance a

organizing b

ion of Self-orga

o emerge. A

t finding bet

should not d

with agents

agent passage

are close to

d shift their l

and self-organ

ot as visually

ents of build

ood and calcu

away. Then

behavior ofte

anizing Compu

t first, the te

tter areas for

directly bloc

. If building

e point, then

the agents’

ocations to a

nizing compu

y effective a

dings. One

ulate the ave

they try to

en seen amo

utation

245

errain

r their

ck the

gs are

n they

path,

avoid

utation

as the

is an

erage

align

ong a

Chapter 6: Application of Self-organizing Computation

246

flock of birds. Buildings that are located closer to agents’ circulations form a street

façade by aligning themselves to directions of streets. Buildings behind those buildings

forming street fronts start to mimic the alignments of buildings around them.

Synchronization among buildings’ rotation angles is eventually expected to produce

natural arrays of buildings. This feature was successful when numbers of buildings were

relatively low. (See figure 6.25)

//get average orientation of buildings within Min-dist away and align
void Building-Align(){

Vector3 headSum = (0, 0, 0);

foreach(bldg in Buildings){
 If(distance(this, bldg)< Min-dist){
 headSum += bldg.head;
 }
}
headSum = headSum.normalize();
this.head = AlignThisBuildingToVector(headSum);

}

The canonical building-align-orientation algorithm

Another idea is to use the bubble meshing methods that I introduced in chapter 3. Instead

of circles, rectangles of various sizes push and pull each other and self-organize to find

better configurations. This method, too, works well with low numbers of buildings;

however, for city design applications that deal with thousands of structures, the time for

calculation becomes extremely extended. Buildings need to be subdivided into groups

within kernels in order to optimize the calculations.

Once the overall environmental potential grows above the aforementioned minima, cities

will have emerged. These cities become new sources of occurrence for buildings. At

randomly selected locations within a certain proximity of each city center, new buildings

are inserted at a certain rate. If the locations are already occupied, the system will find

alternative unoccupied locations.

Chapter 6: Application of Self-organizing Computation

247

6.2.7 Experiments

In order to evaluate the results from the system, information from an existing site, San

Miniato in the region of Tuscany in Italy, was used. San Miniato is located halfway

between Pisa and Florence and is on top of the hills dominating the river plains such as

the Arno, Era, and Egola valleys. It is an extremely ancient settlement, dating from the

prehistoric era. In the eighth century C.E., it was a small village. By the end of the tenth

century, it was already highly populated and surrounded by a moat. In the 12th century

under Frederick II, the town was fortified with extended walls and other features for

defense purposes.

San Miniato displays typical settlement patterns where generations of building structures

and street networks are highly influenced by their topographic conditions. San Miniato

has an extremely unusual topographic condition, having three distinct hills, and its urban

settlements seem to have some correlations with its landform. Since the system being

applied in this chapter is designed to find the correlations between landform and

manmade structures, this is a good test environment for it. Having an actual site with a

certain spatial scale is useful for objectifying various parameters of the system.

Comparisons of results from the system and the actual existing site are presented.

Figure 6.26 – Site plan of San Miniato (Fanelli, 1990).

Chapter 6: Application of Self-organizing Computation

248

Figure 6.27 – Views of San Miniato (Fanelli, 1990).

The topographic information of the site was gained from the Google Earth application.

Meshes that represent the site were first exported to the SketchUp application, then to

Rhinoceros to generate DirectX file format (.x). The DirectX file can be imported into the

system’s environment by reading vertices and surface normals of the mesh. The original

source file does not have extensive detail, so the experiments used meshes with several

different levels of fractal noise to see the variations in results.

Chapter 6: Application of Self-organizing Computation

249

Legends:
 (1) Generation Indicator (8) Diffusion Rate

(2) T-S-C factors Indicator (%) (9) Select file name to OPEN
(3) T-value (for C=1.0) (10) File Name to SAVE
(4) S-value (for C=1.0) (11) Model-Scale, Grid-Size for IMPORT
(5) Slope-distance value (12) Select DirectX-file to Import
(6) Maximum Slope value (13) FRACTAL Noise, height & roughness
(7) Decay Rate (14) NOISE function for surfaces

Keys:
‘A’ := Floor display mode [Checked / Gridlines / None]
‘C’ := City display [on/off]
‘I’ := Agents display [on/off]
‘J’ := Save JPEG file
‘K’ := Building display [on/off]
‘Q’ := Record movie
‘W’:= Display Mode [Shaded / Wireframe / Dotted]

Figure 6.28 – From Google Earth (2010), Rhinoceros (McNeel, 2010), to the author’s software.

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)

(9)
(10)

(11)
(12)

(13)
(14)

Graphic User Interface:

Chapter 6: Application of Self-organizing Computation

250

6.2.8 Results

In the early phases of simulation, results have captured some characteristics that exist in

the actual site in the current condition. Urban developments at the northwest side of the

map (San Miniato Basso) along the main road (SS67: Via Tosco-Romagnola Est.) are

captured from the early stages of the simulation. This is probably due to the flat and open

condition of the area that has become a preferable area for agents’ activities.

Implemented behaviors of agents appeared to be a valid driver with respect to this part of

the development. A main artery has emerged along the valley running across the site in

the east–west direction. This also exists as a relatively narrower road, Via Calenzano.

This is the result of a natural consequence of agents’ behavior, since agents prefer to walk

on level paths due to their S-factor (attraction to slope). Similarly, I found the minor

developments of pathways at the ridges of the San Miniato (hill) area. The system created

several built structures along the path on the ridges. Unfortunately, the system’s

resolution was not fine enough to capture the further detail of this area. Developments in

the southeast area of the simulation were not recognizable in the actual one. One possible

reason is that the model has a boundary condition which does not exist in the real-life site.

Flows of agents from main arteries return from the boundary of the site, and overflows of

these may cause some irregular movements of agents. This issue needs to be resolved for

the future explorations.

Chapter 6: Application of Self-organizing Computation

251

Urban Developments at
this flat area

Passages at this ridge
and some buildings

Emergence of
main arteries

 Figure 6.29 – San Miniato from Google Map (top) and a simulation result.

Chapter 6: Application of Self-organizing Computation

252

Early Periods

Figure 6.30 – Emergence of Trails (Early Periods)

G
ra
du

al
 G
ro
w
th
 P
ro
ce
ss
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

253

A) Trail
Agent0.T_factor = 0;
Agent0.S_factor = 1;
Agent0.MaxSlope = 0.8;
Agent0.slopeDistMax = 1.5;
Agent0.ChemRate = 0.01f;
Agent0.ChemMaxdist = 6;
Agent0.TransMoveS = 0.15f;
Primitive.decayRate = 1f;
Primitive.diffusionRate = 0;

B)
Agent0.T_factor = 1.65;
Agent0.S_factor = 0.6;
Agent0.MaxSlope = 0.8;
Agent0.slopeDistMax = 1.5;
Agent0.ChemRate = 0.012f;
Agent0.ChemMaxdist = 6;
Agent0.TransMoveS = 1.0f;
Primitive.decayRate = 0.9935f;
Primitive.diffusionRate = 0.013f;

C)
Agent0.T_factor = 1.65;
Agent0.slope_factor = 1;
Agent0.MaxSlope = 0.8;
Agent0.slopeDistMax = 1.5;
Agent0.ChemRate = 0.012f;
Agent0.ChemMaxdist = 6;
Agent0.TransMoveS = 1.0f;
Primitive.decayRate = 0.9995f
Primitive.diffusionRate = 0.0f;

D) Direct Path
Agent0.T_factor = 0;
Agent0.slope_factor = 0;
Agent0.MaxSlope = 0.8;
Agent0.slopeDistMax = 1.5;
Agent0.ChemRate = 0.012f;
Agent0.ChemMaxdist = 6;
Agent0.TransMoveS = 1.0f;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0;

E) Minimal Path
Agent0.T_factor = 0.85;
Agent0.slope_factor = 0;
Agent0.MaxSlope = 0.8;
Agent0.slopeDistMax = 1.5;
Agent0.ChemRate = 0.012f;
Agent0.ChemMaxdist = 6;
Agent0.TransMoveS = 1.0f;
Primitive.decayRate = 0.9995f;
Primitive.diffusionRate = 0;

A

B

C

D

E

Figure 6.31a – City Growth Phase with 5 different parameter settings.
D is set as a constant value 1.0 above. (Actual D value in percentage = D/(D+S+T)*100)

Chapter 6: Application of Self-organizing Computation

254

A

B

C

D

E

Figure 6.31b – City Growth Phase with 5 different parameter settings.

Chapter 6: Application of Self-organizing Computation

255

City Growth Phase

The second phase of the experiments concerns the growth after the extraction of the

candidate locations for cities (or population-concentrated areas). This second phase of the

experiment is in a speculative domain. In this phase, I assumed that the traffic flows of

agents are constantly accumulated and that cities are subject to a continuous demand for

growth. (People continuously come into and out of the site area, and the decay-rate and

chemical-rate of the site are set to maintain the site’s active state.) Five schemes shown

here all display an extreme urbanistic future for San Miniato.

If I did not provide any attractions to traffic intensity of terrains, the system continued to

grow trails (A). The branching of trails looks natural and this scheme reflects the real

scale of the terrain fairly well. Emerging hierarchies among thicknesses of trails are also

differentiating major arteries and secondary passages. The buildings eventually filled

major islands on the map densely. This pattern looks similar to many cities in Europe or

Asia where infrastructures have been gradually developed over long periods of time

without experiencing any catastrophic interventions.

Paths that were produced only from an attraction to destinations formed direct paths (D).

Although this result does not reflect the scale of the terrain very well, this type of layout

can be seen in railway tracks or highway layouts at larger scales.

The other schemes (B, C, and E) are in-between the two preceding schemes in terms of

the parameter settings. I obtained bundling arteries at some locations. These results are

more economical in terms of the construction of roads since they have a shorter overall

length than the trail scheme (A). Depending on the slight differences in parameters, some

sub-arteries’ configurations vary.

Chapter 6: Application of Self-organizing Computation

256

F
ig

u
re

 6
.3

2a
 –

 C
it

y
G

ro
w

th
 P

ha
se

:
S

ch
em

e
A

 (
T

ra
il

s)
.

 G
ra
du

al
 G
ro
w
th
 P
ro
ce
ss
 o
f T

ra
ils
 a
nd

 B
ui
ld
in
gs
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

257

F
ig

u
re

 6
.3

2b
 –

 C
it

y
G

ro
w

th
 P

h
as

e:
 S

ch
em

e
B

.
 G
ra
du

al
 G
ro
w
th
 P
ro
ce
ss
 o
f T

ra
ils
 a
nd

 B
ui
ld
in
gs
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

258

F
ig

u
re

 6
.3

2c
 –

 C
it

y
G

ro
w

th
 P

h
as

e:
 S

ch
em

e
C

.
 G
ra
du

al
 G
ro
w
th
 P
ro
ce
ss
 o
f T

ra
ils
 a
nd

 B
ui
ld
in
gs
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

259

F
ig

u
re

 6
.3

2d
 –

 C
it

y
G

ro
w

th
 P

h
as

e:
 S

ch
em

e
D

 (
D

ir
ec

t
P

at
h

).

 G
ra
du

al
 G
ro
w
th
 P
ro
ce
ss
 o
f T

ra
ils
 a
nd

 B
ui
ld
in
gs
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

260

F
ig

u
re

 6
.3

2e
 –

 C
it

y
G

ro
w

th
 P

h
as

e:
 S

ch
em

e
E

 (
M

in
im

u
m

 P
at

h
).

 G
ra
du

al
 G
ro
w
th
 P
ro
ce
ss
 o
f T

ra
ils
 a
nd

 B
ui
ld
in
gs
 ‐
‐‐
‐‐
‐>

Chapter 6: Application of Self-organizing Computation

261

6.3 Conclusion

Agents in this program represent possible pedestrian movements in an abstract manner.

They can be literally interpreted as pedestrians walking on a terrain at the time of the

simulation, but they can also be interpreted as abstract entities that record intensities of

activity level based on locations. The original interest was to use them as an empirical

tool that could extract behavioral tendencies. Representation of their movements was not

the primary purpose of the system. But by taking advantage of parallel computing,

multiple agents’ reactions are actively used to produce new designs.

Agents are influenced by their environment. However, they can also influence their

environment in turn. Environmental potentials are dynamic values that are constantly

updated by agents’ behaviors and become incentives to change their environment.

Moreover, these changes in the environment can stimulate agents to shift their future

movements and behaviors. Changes caused by some agents can possibly influence others

in their environment as well. This chain propagation of events enables the system to have

an open feedback loop between agents and environments. This non-linear feedback is the

key characteristic of the system that makes it a generative computational system. This

characteristic may lead to producing a self-organizing global spatial structure from local

interactions among agents and the environment.

6.3.1 Degree of Reliance on External Knowledge

Many factors in this project are generatively derived from the system itself using self-

organizing computation techniques. Unlike other shape-based applications, such as L-

Chapter 6: Application of Self-organizing Computation

262

system and shape grammars, the system uses its own components’ indirect interactions,

and expects the self-organization of large-scale spatial structures. Instead of imposing

specific geometry or topological configurations, this system’s design variables are

reduced to simple key design factors, such as threshold parameters, that induce certain

actions among agents. These parameters are among the few factors that the system still

requires as inputs.

Due to this high dependency on parameter settings, emergence of large-scale structures is

not at all guaranteed in this system. Slight changes in the proportions of parameters for T,

S, and D-factors lead to very different results. Even worse, for some cases, if incremental

rate and decay rate of chemicals are not balanced well, the results are either explosions of

chemical values all over the site or extinction of all activities. Aforementioned geometry-

based systems are able to produce more detailed representations because they possess

repertoires that are designed by humans from the outset. This lack of detail in our

simulated representations also results from the limits of currently available speeds of

computation. Greater levels of detail and sophistication will require intensive graphic

memories and a more efficient structure for algorithms. Higher processing speed and

power of computers definitely promises improvements for self-organizing computation.

6.3.2 Scale of Space and Time

Scale of space and time is one of the most critical issues relating to this particular

application. The system sets model-scale and unit-grid-size when importing

topographical information from actual site data. These two parameters consequently set

Chapter 6: Application of Self-organizing Computation

263

the scale relative to agents and the environment. Agents’ movements and behaviors are

designed to reflect a certain scale of actions. Agents’ cone of vision is one such critical

parameter that changes the results based on unit-grid-distance. There must be an

optimized scale factor between a model and a real-life environment. After a great number

of trials, after witnessing many results that are similar to real-life scenarios, I came to the

conclusion that finding the right scale factor that naturally synchronizes two worlds is the

most critical part of these self-organizing design experiments.

At this stage of the software development, I could only empirically verify these points of

synchronization by testing and adjusting various parameters, and this world inside the

system could never be a complete representation of the actual world. Seeing the world

through this over-simplified model framework may become a target of criticism.

However, I believe that finding a few (but the most critical) factors that lead to the self-

organizing phenomena of interest is the first step toward unveiling the principles behind

these phenomena. By studying the primary drivers for certain outcomes, there is a chance

to understand and decode the principle behind self-organizing pattern formation in many

systems. Whether those pattern formations involving human decisions can be reduced to

a certain principle or algorithmically representable framework has yet to become clear. I

will return to this topic in the next chapter.

6.3.3 Limitations

During the course of socio-economic development, agents gradually grow from trail-

seeking settlers to merchants touring through various city centers dispersed in the

Chapter 6: Application of Self-organizing Computation

264

environment. Agents change their behaviors from the original wandering movements

based on momentary reactions to more mature states using itineraries. The results of

street patterns also reflect these changes. Original trails are more organic and almost look

like animal trails, whereas ones that developed from agents’ more mature states are more

goal-oriented and ordered.

Agents’ means of transportation are one thing that has not been adequately addressed

previously. At the time of the emergence of cities, they have more direct purposes and

paths to their destinations, and they may start to rely on faster and more robust means of

transportation. In the experiments, it was attempted to address these changes by, for

example, reducing the factor for slope attraction and increasing attraction to their

destinations, which eventually leads to production of a more directed network similar to

highways and railways. The representations of agents are kept as abstract entities and

being too specific about these details is avoided.

However, transitions to automobile or railway systems will have major influences on

later developments of the environment. For example, railway stations might bring

prosperity to the nearby regions; however, railway lines often physically disconnect and

separate some areas in undesirable manners. In real-life scenarios, these changes by

human interventions are discrete and discontinuous transitions rather than gradual ones

implemented in the system, and due to that discrete and discontinuous nature of the

transitions, some environmental changes can occur abruptly.

Chapter 6: Application of Self-organizing Computation

265

Maps in Figure 31 (Ferguson et al., 1990; Brant, 1994) show continual transformation of

structures in a Zuni pueblo village. These structures gradually dispersed as the needs for

defense declined and vehicular transportation found streets useful. These are changes

caused by specific physical and technological developments, and simulation of these self-

organizing pattern formations requires more specific implementation of major

components. At this stage, the abstract and conceptual nature of the system has

limitations with respect to capturing some details.

Figure 6.33 – Continual transformation of structures in Zuni pueblo village. Maps created by
Mendeleff, V., Kroeber, A., and Borchers, P. from (Ferguson et al., 1990; Brant, 1994).

Another critical issue is the difficulty of knowing the legitimacy of the results from the

system. It is difficult to know for sure whether the system’s state is already mature

enough to introduce new behaviors for agents. I have tried the simulations with many

different seed values for random number generators. I expected to see the same, or

1882 1912

1945

Chapter 6: Application of Self-organizing Computation

266

relatively close, results for the locations of emergent cities; however, I found some

perturbations based on the seed values. Although agents start with different seed values,

if I use sufficient numbers of agents and trials, the results should display some cohesion

between behaviors and environments. I allow some levels of perturbations in results due

to the nature of stochastic simulations. But some inconsistencies found in results may

imply that the numbers of trials by agents might be insufficient to shift their behaviors.

The results might be overly biased by initial stages of the simulations, which are likely to

be influenced by the different seed values. If I continue the simulations long enough, this

bias should be weakened, and results that are essential to the correlation among agents

and environments should prevail over the initial biases.

6.3.4 Future Work

Emergence of hierarchy among built structures is one implementation that I would like to

add to my system. There are several promising computational strategies for implementing

the emergence of hierarchies. One is full implementation of the bubble mesh method

introduced in chapter 3 for buildings and roads. Buildings push and pull each other, based

on given territorial parameters and adjacent road configurations, to self-organize

themselves. This implementation of active form-finding behavior is a technically feasible

level of implementation. I already have alignment algorithms for all buildings and roads;

however, this technique was computationally too time-consuming for numbers of

buildings exceeding 5,000. Tests on smaller-scale areas can be conducted.

Chapter 6: Application of Self-organizing Computation

267

The buildings are represented as rectangular boxes with various heights based on the

population density of the area; however, their growth does not always need to follow

continuous functions of growth. Clusters of smaller buildings can be turned into mid-rise

buildings as the economy and needs of the area increase. Densely packed bundles of mid-

rise buildings can be turned into a single high-rise building at some point in the growth

due to the economy and spatial needs of the sites. Such events triggered by human

interventions are discontinuous events and do not always follow continuous growth

patterns. These interventions can also be influenced by types of occupancies and the roles

of buildings in regions as well. Emergence of new buildings’ physical orientations and

types of programs can further affect the later development of regions. Some buildings can

turn into monumental landmarks, and the visual impact of those can be a major stimulus

for agents to execute new actions. As with biological growth starting from a single cell

and later turning into specialized body components, morphogenic interpretation of city

development can be a challenge. Simulation starts by aggregating homogeneous

components as built structures, but these aggregations turn into more specific programs

and purposes, such as residential or commercial, as the simulation develops. Simulation

of building developments in modern society and more contemporary phases of agents’

behaviors merits further investigation. A modern phase of this application is anticipated.

Evolutionary game theory

I would also like to note that evolutionary game theory is another potential computational

technique for describing dynamics among various building types and their negotiations.

Evolutionary game theory considers “repeatedly played games” and introduces the

Chapter 6: Application of Self-organizing Computation

268

notions of mutation and selection, whereas traditional game theory was mostly concerned

with one-shot or discrete numbers of games. As I noted in chapter 3, Novak and May

(1992; 2006) introduced the spatial extension of evolutionary dynamics using cellular

automata. Negotiation among different building types can possibly be implemented by

using these notions from evolutionary game theory. Survivals and extinctions of various

building types in densely populated urban settings can be represented by strategic aspects

of evolution based on mutation and selection. Using interactions among different

characteristics of architectural program types as payoffs, and simulating their long-term

configurative trends, could be one promising future implementation.

Active Learning by Agents

Agents’ active learning capability is another challenge for future experiments. I have

introduced changes in agents’ behaviors induced by environmental changes. Agents are

programmed to produce new behaviors from compounds of a few sets of parameterized

primitives. However, agents’ behaviors are constrained by the system’s limitations and

they do not create entirely new behaviors from scratch in this program. To some extent,

this would be computationally possible by applying learning algorithms such as neural

networks to the self-organizing computation frameworks. Ohuchi (2002) introduced a

method to combine a neural network and a genetic algorithm to evolve agents’ behaviors.

Genetic programming is another alternative that can allow systems to produce new ideas.

The author has previously experimented in a different project with using a combination

of a GA and a neural network. This method requires extensive computation time and was

only feasible for very simple implementations with hardware available at the time.

Chapter 7: Conclusions

269

Chapter 7

Conclusions

Introduction

This thesis has documented efforts to describe computational strategies in architecture

and urban design inspired by the concept of self-organization which can be seen from

some natural and artificial systems’ behaviors. My research was based on the assumption

that with emerging complexity of architectural programs, quantities of information, and

advanced technologies, there will be more demands for buildings to be able to change

over time to adapt to newly emerging needs for different qualities and quantities of

architectural and urban-scale components.

The proposed methods are still in abstract forms and are not ready to produce highly

detailed instances of architecture. However, they show some advantages of self-

organizing computation through the conceptual frameworks of the projects. Self-

organizing computation’s ability to describe systems that need to change over time

Chapter 7: Conclusions

270

(growth), its ability to discover new goals and objectives, and its suitability for searching

large design spaces are main characteristics that can be recognized from experiments in

this thesis.

In the case of closed systems with limited reconfigurability, decentralized control systems

operated by self-organizing logics may provide robustness and flexibility over

conventional centralized control systems. Operable shading devices can be a simple

example that falls into this category. However, the true advantages of self-organizing

computation are in the applications of its logic to extensible reconfigurable systems that

are not limited to finite predefined configurations – systems that can grow over time and

acquire new objectives based on interactions with their ever-changing environments. A

“city” is a good example of this category despite its slow pace of growth sequence. A city

has a few basic components – buildings, streets, transportation infrastructures, and so on

– and its spontaneous developments are the results of interactions among these

fundamental components and their environments.

There are emerging cases of extensible reconfigurable systems on a smaller physical

scale, closer to that of buildings and with the shorter span of time that buildings require

for their developments. This is due to the advancing technologies to build larger

structures faster and to make them more active and responsive by the use of actuation and

sensing devices. These emerging new building types are still embryonic, and we have yet

to see them in actuality; however, realization and design strategies of such systems may

benefit by an active incorporation of self-organizing computation as introduced in this

thesis. The proposed methods’ applicability is still in the speculative domain of future

Chapter 7: Conclusions

271

architectural developments, yet this thesis has tried to analyze the possibilities of self-

organizing computation through clear conceptual experiments.

7.1 Two Difficulties in Computational Approaches to Generative

Design in Architecture

In the last three chapters, I have introduced and reviewed various self-organizing

computational techniques applied to architectural design contexts. Most of them remain

in highly conceptual stages, yet they can, in principle, be extended to more specific

contexts of architectural problems. In general, problems in computational approaches to

generation of architectural designs involve two issues. Firstly, the search spaces for

solutions are too large if we include all possible design configurations. For instance, if we

simply think about shapes of a table, even with a single material, there are too many

formal possibilities. This is even more true when considering a range of materials in

combination. Secondly, many objectives for architectural designs are multi-dimensional,

and often objectives conflict. For example, designing a large tabletop surface with skinny

and less visible support structures are two conflicting objectives. Multiple objectives at

odds with each other often lead searches into non-linear problems.

7.2 Two Common Approaches

Moreover, in addition to these two issues, if we start to consider adaptation to dynamic

changes of environments and active growth for objects being designed, finding the right

computational framework becomes a complex task, and the time that it takes to compute

increases exponentially. In order to address these difficulties in a computationally

Chapter 7: Conclusions

272

feasible manner, we need to strategically reframe the problem. There are two possible

approaches for this task.

(1) Reduce Possibilities and Choose among a Smaller Subset

One approach is to reduce the problem’s framework to a simpler form in order to reduce

the size of the search space. By simplifying the problem’s framework, we can expect

greater reduction in the size of the search space. A smart selection and clever

implementation of objectives can be one way to simplify the framework. Complex

architectural problems dealing with numbers of formal variations can, in principle, be

reduced to simpler problem formats. For example, architectural plan configurations can

be reduced to topological graphs indicating connectivity of each space. We thereby

reduce the number of slight perturbations in plan geometries, and the framework of the

problem is simplified. Consequently, the search space is greatly reduced and it might be

possible to find the right configurations from limited numbers of permutations of

schemes based on a process of elimination. In the case of quantitatively representable

objectives, such as structural issues, this approach could be effective. Even for some of

the qualitative issues, user interactive frameworks that permit users input, such as the

aforementioned interactive genetic algorithms, can solve the problem to some extent.

One possible drawback of this approach lies in oversimplification of architectural

problems. This method leads to some awkward selections due to the method’s inability to

capture subtle differences in architectural representations. Oversimplified architectural

representation also may not provide correct one-to-one mapping to physical building

designs. The system doing the simplification is not always able to distinguish all

Chapter 7: Conclusions

273

categories of architectural programs or components, and sometimes it forces some

components to be classified into categories that do not conform to the original

characteristics.

The system may be able to provide reasonable results for purely logic-driven problem

parameters; however, some problems’ search space can still be outrageously too large to

calculate even with merely logic-driven parameters. In addition, if all the architectural

problems are reducible to some deterministically solvable simple formats, another

controversial question emerges: What are the roles of humans in the processes of design?

Do we just need to provide concise models, formulate the problems, and wait for the

answers from machines?

(2) Employ Methods That Feature Self-directed Solution-seeking Behaviors

Another approach to solving the problem of enormous size of search space is to find

clever and efficient search methods. Self-organizing computation and search methods

based on stochastic selections such as a selection sequence seen in a genetic algorithm

(GA) probably fall into this category. This approach is to accept a problem’s framework

as is, and to find search methods that are able to actively maneuver inside a fitness

landscape to search for solutions. These methods can direct themselves to find better

solutions within efficient computational time. The aforementioned circle packing

problem using a bubble meshing method was one approach representing this

methodology. The search space for packing multiple differently-sized circles within a

circle is extremely large. Formulating analytical methods to directly derive the best

solution is not feasible with the current speed of any available computers. Simulation

Chapter 7: Conclusions

274

using a bubble meshing method finds better solutions in a reasonable range of

computational time by using the physical dynamics of circles pushing and pulling each

other. The Nelder-Mead optimization method introduced in chapter 4 is another example

displaying this heuristic approach. In the particle swarm optimization (Kennedy and

Eberhart, 1995), multiple particles inside the multi-dimensional solution space can

collectively and interactively move to find optimum solutions from a fitness landscape.

These systems do not guarantee the best solution from the outset, but provide reasonable

solutions within a computationally feasible time. Self-organizing computation accepts

problems’ frameworks and lets the system search its emergent structures for solutions.

These systems have features that can be characterized as autonomous solution-seeking

behaviors. Many of these systems, such as GAs, do not need instructions about how to

find solutions. Fluctuations within the system are also one attribute of such systems that

can sow seeds for the discovery of new solutions inside the vast search spaces. A

polytope used in the Nelder-Mead method in Chapter 5 represents this characteristic

almost literally. The polytope moves toward a local optimum of a problem by replacing

one of its vertices with one closer toward the optimum. In the case of search in 2-

dimensional space, the polytope is a triangle climbing toward peak areas of the fitness

landscape, and it is often metaphorically called “the amoeba method.”

The above two approaches can be effectively used in pairs when one tackles architectural

design problems. In terms of pure computational approaches in architectural design,

strategic uses of the above two methods in proper conditions will become more effective.

For example, the second approach can be applied to problems that have been simplified

Chapter 7: Conclusions

275

to some extent by the first approach. In much problem-solving using a GA, an original

population of strings is already represented as genotypes, and these genotypes are

encoded from phenotypes that represent actual architectural schemes. This encoding

process belongs to the first approach that reduces and simplifies the search space.

7.3 Summary: Comparison of Proposed Systems

Most of the architectural applications introduced in this thesis involve many

simplifications of problems, for example, by representing a unit volume of built

structures by a voxel. However, most of the primary derivations of structures rely on self-

organizing computation or design search methods based on selection procedures, and

these computational methods belong to the second approach in the previous discussion –

use of the methods with solution-seeking behaviors. This approach is different from

brute-force search based on the process of elimination.

Chapter 7: Conclusions

276

Method Computational
Methods
(Objectives)

Implemente
d Algorithms

Subunit Emergent
Structures
(derivatives)

Interactions Behaviors

Circle Packing
using a Bubble
Meshing Method
(Chapter 3)

Self-organizing
Computation

Bubble
Meshing
Method

Circle
(Bubble)

Configurations
of circles

Concurrent
Multiple
Interactions

Physics-based
(push & pull)

Pedestrian
Crossing
Simulation (Lane
Formations)
(Chapter 3)

Self-organizing
Computation

Agent-
based
computation

Pedestrian
Agent

Formations by
Pedestrians
(Lane
Formations)

Concurrent
Multiple
Interactions

Particle System
(Elastic Spring
Mass System)
(Chapter 4)

Self-organizing
Computation

Evaluation
(Method 1)

Finite
Difference
Method

Mass Particle
linked by
Springs

Funicular
Structures
(Catenary
Shapes, Stable
Structures)

Concurrent
Multiple
Interactions

Physics-based
(Elastic behaviors
of springs,
damping forces,
and etc.)

Turtle
Interpretation of
L-system + GA‘s
framework
(Chapter 4)

Design Search
(Method 2)

L-system
Turtle-
geometry
GA

Voxel
(Unit Mass)

Selections
based on
Fitness
Functions

No dynamic
interactions

DLA
(Diffusion-limited
Aggregation)
(Chapter 5)

Growth
(Method 3)

DLA
Laplacian
diffusion
equation.
Probabilistic
model

Voxel
(Housing Unit)

Cluster(s) of
housing units

Discrete
One by One
Not
multiple
interactions

Random Walk
Stop next to the
existing clusters

Experiment using
Physical
Components
(Chapter 5)

Adaptation
(Method 3)

Multi-
dimensional
Optimization
(Nelder-
Meade
method)

Panel with
light sensor

Panel
Configurations

Concurrent
Multiple
Interactions

Agent-based
simulation of
settlement
(Chapter 6)

Self-organizing
Computation

Growth +
Adaptation
(Method 3)

Agent-
based
computation

Settler Agents
&
Surface
Patches

Streets &
Buildings

Concurrent
Multiple
Interactions

Agents’
Behaviors
changes
Open loop
feedback
between agents
& environment.

Figure 7.1a – Table showing different strategies and their characteristics

Chapter 7: Conclusions

277

Feedback (+, -) Randomness
(Fluctuations)

Find unknown
Goals / solutions?
Reconfigurable?

Growth Model? Advantages,
(Pros.)

Limitations,
(cons.)

(+) If too close
push

(-) If too far apart
pull

Circles’ Initial
Conditions (YES)
Circles’
Movements (NO)

(+) If no obstacles
follow others

(-) If collision detected
avoid others

Agents’ Initial
Conditions (YES)
Pedestrian
Movements (YES)

Calculate Axial
Forces on members

Calculate
displacement

Update location

NO
Deterministic
behaviors

GA uses
Stochastic
selections
(Crossover &
Mutations)

YES.
Turtle can change
its path based on
fitness values.

Generation by
generation, it evolves
solutions. However, no
continuity among
proceeding generations.

Various Fitness
functions can be
applied.

Limits in
Computational
speed

If no obstacles
random walk

If next to others
stop random walk

Movements of
Units
(YES & All
Random)

YES.
YES.

A model can show
gradual growth pattern
over time.

Represents
Gradual Growth
patterns

Stochastic
model works,
but non-
deterministic
results.

Initial Condition
(YES)
Reconfiguration
sequences (NO)

Find unknown
configurations for
new conditions.
(However, no-self-
reproduction
(growth) capability
in current design)
YES.

Non-growth model. A
number of components
is fixed for now.
Conceptually, can be
extended to growth
model.

Integrate design
tool and physical
ideas.
Building-scale
application
requires
hardware’s
technological
innovation for more
sophistication.

Already similar
conceptual
precedents in
Comp. Sci.
area. (But not
directly in
architectural
app.)

Open loop feedback
between agents &
environment
(See chapter 6)

Agents’ Initial
Conditions (YES)
Agents’ Behaviors
(YES)

Yes Displays gradual growth
patterns

No need to impose
existing typological
model of cities.
Emergent
formation.

Hard to gain
details without
any
interpretation
by users.

Figure 7.1b – Table showing different strategies and their characteristics

Chapter 7: Conclusions

278

Selection – Design Search method

Among seven applications or experiments in the last three chapters (see Figure 7.1a-b),

only the turtle interpretation of L-system + GA system (Chapter 4) belongs to the design

search method using selection (method 2 in Chapter 3) and has fewer self-organizing

characteristics. This experiment platform allows users to have multiple objectives as

evaluation criteria. The objectives include architectural criteria, such as density, structural

stability, number of exposed faces of structures, and so on. GA’s stochastic selection

methods using crossover and mutation are designed to move the population away from

local optima, and the system’s advantage is that the selections based on a GA can be

applied to solve global optimization. However, the system’s limitation is that it does not

have an ability to produce new objectives that are better suited to given environmental

settings.

The physical experiment using a microcontroller (Chapter 5) is classified as an adaptation

method (Method 3 in Chapter 3). However an implemented multi-dimensional

optimization algorithm, the Nelder-Mead method, shows the characteristics of design

search using selection (Method 2 in Chapter 3). Unlike the method based on GAs that can

search a fitness landscape globally, this method tends to focus on searching for local

optima without the population-based stochastic sampling used in GAs, and the method

cannot concurrently search for any other existing alternative potential solutions. This was

partly a compromise between calculation speed and real-time physical performance

limitations of hardware components. Since the system’s platform has a clear definition of

subunit as an architectural panel unit with sensing and activation mechanisms, algorithms

Chapter 7: Conclusions

279

that can perform reconfigurations based on self-organizing logics can be implemented for

future explorations as the performance and availability of hardware increases.

The following five experiments are considered as a system using self-organizing

computation: circle packing using a bubble meshing method (Chapter 3), lane formation

by pedestrian agents (Chapter 3), elastic mass particle system (Chapter 4), the DLA

experiment (Chapter 5), and agent-based simulation / design of settlement patterns

(Chapter 6).

Subunits’ Interactions

The DLA experiment is classified as self-organizing computation; however, its type of

interaction is not considered as concurrent multiple interactions. Only one subunit (voxel)

at a time can move (based on random walk) and interact with the rest of the subunits that

are already static. This interaction is discrete one-way sensing and action. In an original

DLA model, subunits do not have an ability to reconfigure themselves once they have

stabilized. Several approaches introduced in Chapter 5 – swapping and subtraction

algorithms – are strategies to improve the DLA system to be a more interchangeable and

reconfigurable process. The resulting structures of the DLA are based on linear

summation of the individual contributions from these step-by-step accumulations of

subunits and show certain geometrical features such as self-similarity. However, whether

this discrete process can induce emergence of structures that display qualitatively new

properties is not clear. Non-linearity in emergent formation processes is one of the

underlying characteristics of self-organization, and multiple interactions are a key

attribute for inducing such a characteristic.

Chapter 7: Conclusions

280

Lack of Selection Sequences in Self-organizing Computation

One critical issue with self-organizing computation systems is a lack of selection

sequences. All examples of self-organizing computation in this thesis can produce only

one result at one time of their simulation runs, and the systems can provide a wider range

of solutions if fluctuations are implemented within their behaviors. It is probably more

convincing to prepare another layer of evaluation sequence after the generation of self-

organizing structures in order to select the best possible structure for a certain condition.

In the case of the DLA experiments, the process produces fluctuations in its resulting

structures due to the subunits’ random walk behaviors. Since the DLA can produce only

one result at a time from one run of the simulation, it is best to provide additional

processes to evaluate and select better schemes among all produced structures.

Selection and Self-organization

One of the differences between self-organizing computation and design search based on

selection (such as GAs) is whether the methods have a potential to generate new

objectives. In the case of selection procedures, normally the systems require fixed fitness

or utility functions for selection of better schemes from populations of schemes. It is

beneficial to use two approaches in tandem in order to compensate for the shortcomings

of each. Figure 7.2 shows a proposed conceptual work flow of two approaches in tandem.

Random or Deterministic Agents’ Behaviors

In Chapter 3, randomness is listed as one of the key attributes of self-organizing

computation systems. Although randomness is not a necessary condition for such systems

Chapter 7: Conclusions

281

for the emergence of structures, randomness plays an important role in the discovery of

new solutions in both systems. (This is also true for design search methods with selection

sequences. In the case of a GA, stochastic selection plays a key role in searching

unexploited areas in the fitness landscape.)

Circle packing using a bubble meshing method (Chapter 3) and the Elastic Mass Particle

system (Chapter 4) do not rely on any types of fluctuations by random behaviors (except

the initial configurations of circles – locations and radii – in experiments using a bubble

meshing method). In these cases, a single result is deterministically derived. There is no

need for an additional selection procedure to gain a result in these cases. The reason for

using self-organizing computation for these two cases is that analytical approaches to

solve the same problems are not practically feasible.

In the above two cases, the objectives of the experiments are explicit: finding the steady

states of structures based on forces in each member, and finding configurations of circles

that fit inside a larger circle. Locally defined behaviors of subunits are carefully chosen to

satisfy targeted objectives, or empirically these behaviors are already known.

On the other hand, in the case of pedestrian agents, we only provide behaviors of agents,

but objectives of collective agents are not clearly known or defined at the outset. Lanes

formed by pedestrian agents are results induced from agents’ locally defined behaviors.

Of course, collision avoidance and repelling behaviors of agents already indirectly imply

smooth and steady flows of agents as a collective objective of pedestrian groups;

however, for some other scenarios, we may find an unpredicted objective as a byproduct

Chapter 7: Conclusions

282

of emergent structures that are induced from locally defined behaviors of agents. An

implemented set of agents’ behaviors may produce globally functional structures that

indicate unpredicted objectives.

Platform development of
Self-organizing Computation:

Define environment and boundary conditions of a system.
Define subunits of a system.
Define behaviors of subunits.

- Interaction Type
- Feedback
- Fluctuations (randomness)
(If one already has clear objectives, objectives need to be expressed
through behaviors of subunits. This mapping is not trivial for some
cases.)

Define initial condition of a system.
 States of subunits
 States of environments
 Initial set of parameter values (if parameters exist)
Run a system.

 Results

Selection procedure (Design Search method)
 Define Solution Space (Initial conditions and Results from SOC)
 Define objectives for selection (fitness functions)
 Define selection sequence methods (GA, etc.)

 Optimal results

Figure 7.2 – Flow chart summarizing a platform development of self-organizing computation

Fitness landscape for Selection

Chapter 7: Conclusions

283

Open Loop Feedback System

The application in Chapter 6, agent-based simulation/design of settlement patterns, is the

only system that can change subunits’ behaviors over time based on stimuli from the

changing environment. All other systems’ subunits that were previously introduced have

fixed behaviors, and they do not update themselves over time. This co-evolutionary

process between agents and environments is known to exist in many self-organizing

systems in nature, as introduced in Chapter 2. There are positive and negative feedbacks

inside such systems. In the case of this system from Chapter 6, trails that are frequently

used by agents become attractors for agents in their neighborhoods. Consequently, the

frequency of these trails’ usage is amplified. This is a typical example of positive

feedback. The trails that have not been used regularly by agents start to lose their value

for attraction. The value for attraction – intensity of traffic – is directly related to the

visibility of the trails, so that the latter trails will eventually fade away. The positive and

negative feedbacks work as a pair to produce organic gradual transformations of street

patterns such as bundling and branching in the system.

Adaptation

This system from Chapter 6 has the key ingredients of self-organizing systems introduced

in Chapter 3; open loop feedback, multiple interactions, and randomness. The system’s

objectives are also not as obvious as cases of circle packing or simulation of pedestrian

crossings, and the system has more generative aspects than the others. Primary inputs of

the system are essential information about the site conditions, such as topography, and

basic agents’ behaviors. These original implementations alone may not be sufficient to

Chapter 7: Conclusions

284

produce explicit meanings for objectives of the system. Environmental growth of the

system and agents’ behavioral changes lead the entire system to gradually adapt itself to

emerging states of the system. “Developing shortest path patterns for agents to travel

around cities,” “configuring economical path patterns for construction,” “creating paths

that have least elevation changes for agents’ trips,” or “building allocations that can

maintain functional traffic patterns,” are several interpreted objectives from the results of

the system with various different parameter settings. These objectives are ex post

interpretations of the results and are not provided directly as initial requirements or goals

for the system. During the course of the system’s run, these changes toward satisfaction

of certain objectives emerge as a result of the system’s ability to adjust its response to

stimuli according to the state of the environment.

7.4 Application Areas That Benefit from the Advantages of Self-

organizing Computation

Growth Model

In conclusion, there are several advantages of self-organizing computation in

development of generative design systems in architecture. Firstly, the most obvious

advantage is that self-organizing computation can represent and generate growth

processes over time. This means that the approach can design a system in transition.

Recently, design of architecture is not all about providing a single design instance static

in time. Many buildings and urban developments are required to have flexibility to

accommodate new unexpected usage patterns and new spatial demands for emerging

architectural programs. Extensibility of the system is needed for new generations of

Chapter 7: Conclusions

285

buildings, and many buildings are expected to be planned on the basis of an open-

planning approach from now on.

Performance-based Design

Another advantage associated with its ability to accommodate growth, is its suitability for

performance-based applications. In Chapter 2, several existing models of design directed

by multiple individuals such as Kowloon Walled City were introduced, and they were all

manually executed without use of any computational systems. As results, they produced

many malfunctioning spatial components within their complexes – for example, deficient

lighting and circulation inside the dungeon-like structures. Self-organizing computation is

the computational approach that can bring more accuracy and precision based on

analytical measures of structures’ performances without loss of their decentralized

adaptable characteristics. For example, the DLA experiments in Chapter 4 use probability

fields for the lighting conditions to quantify values associated with the structures.

Potentials we found from spontaneous growth such as Kowloon’s adaptability for rapidly

growing populations can be greatly enhanced by computational simulations based on

self-organizing computation.

Objectives in Transition

In professional practice in architecture, in most cases, requirements for certain programs

and sizes of architectural space are given from the outset, based on clients’ budgets and

code regulations. Objectives for a given space are explicit information in many cases of

conventional architectural design work. When these requirements are not completely

Chapter 7: Conclusions

286

given by the design problems’ frameworks, the objectives themselves need to be

generated from primary information about sites such as landform, environmental

conditions, sites’ boundary conditions, and so on. As I mentioned in the introductory

chapter, such conditions have begun to be found among large-scale complex buildings

that are undergoing constant changes of their usage.

One of the byproducts of a growth model is the ability to produce new objectives based

on the model and its environment’s coevolutionary development processes. Discovering

unknown design objectives (in a sense, the emergence of new architectural programs) is

one unique characteristic that is potentially applicable to planning and strategic

development of architectural projects in earlier stages. When sufficient information about

the proposed buildings and site is not available, the system can become an active provider

of potential schemes. The parameters that govern the future changes of the system – its

growth – should be adjusted based on the comparisons of simulation results that are

selected by the developers of the planning and designs. Consequently, these parameter

values will become (formerly unknown) factors for projects’ initial conditions.

Decentralized Systems and System Control

Self-organizing systems that consist of subunits and their interactions naturally possess a

decentralized character. This decentralized character found in self-organizing

computation systems is obviously advantageous for developing operation systems for

buildings with some types of adjustable functionalities. Advantages of decentralized

systems are their distributedness and robustness, where failures of some parts of a system

do not always lead to a failure of the entire system.

Chapter 7: Conclusions

287

Typical examples of such building components are operable windows for lighting and air

ventilation, mechanical shading devices such as louvers and canopies, movable partitions,

and so on. If the controls of such devices are distributed, local failures do not cause a

failure of the entire system. The architectural panel system using physical components

introduced in Chapter 5 is a good example of this characteristic’s potential. Since sensing

and actuation mechanisms are locally embedded inside each individual panel, the system

will still try to function even if one or two components stop working. Furthermore, there

are potentials to build evolvable systems that can learn from sensors and actuators

through open feedback loops. A distributed component, as an agent, can learn new

appropriate behaviors based on feedback from the actual physical environment rather

than always following initially predefined instructions of the system. This is similar to the

implementation of open loop feedback for agents in the experiments in Chapter 6.

In the case of extensible growth models, discussion goes beyond the simple operations of

buildings with fixed components and functionalities. For example, in the case of the

aforementioned physical panel system from Chapter 5, panels will no longer be four fixed

panels; instead they will have particular joint systems to link and reconfigure to satisfy

unknown objectives. This ability to reconfigure is the case where the concept of growth is

applied to conventional systems, and this adaptability for growth models separates self-

organizing computation from many other existing design computing systems.

7

E

T

b

n

p

th

co

th

T

gr

gr

to

7.5 Rem

Explicit or G

The applicat

ehaviors bas

etwork syst

atterns. Rep

hat indicate

onsistently u

he gradual pr

The same res

raphs; howe

radual grow

o another can

Figure

marks and

Gradient Re

tion introdu

sed on self-

ems withou

presentations

e degrees o

used through

rocesses of s

sults can be

ever, this bin

wth in a spati

n be well vis

7.3 – Vector

d Implica

presentatio

uced in Cha

-organizing c

ut having an

s and derivat

of traffic f

hout the sim

street pattern

treated and

nary, on-or-o

iotemporal m

sualized thro

rized represe

ations

ns

apter 6 use

computation

ny types of

tions of thei

frequency.

mulation sinc

n generation

d represented

off, type of r

manner. But

ough the colo

entation and

es agents w

n. They are

recipe, temp

ir results all

This repre

ce the style e

over time.

d as topolog

representatio

transformati

or gradient m

rasterized gr

Cha

which have

able to com

plate, or typ

l rely on ras

sentational

enables the

gical graphs

on is not suit

ion sequenc

map (Figure

radients repr

apter 7: Concl

solution-see

me up with s

pology for s

sterized grad

style has

representatio

using vecto

ted for displa

es from one

7.3).

resentation

lusions

288

eking

street

street

dients

been

on of

orized

aying

state

Chapter 7: Conclusions

289

A light quantum (a photon) can be interpreted as both a particle and a wave. Similarly,

the same dualistic interpretation can be applied to many design phenomena dealing with

physical morphology. Problems of street generation can be reduced to problems of

mathematical graphs, and one can gain many benefits from analytical aspects of graph

theory by taking this direction. The traveling path problems famously represented by the

Königsberg Bridge problem are cases where the graph approach becomes more

advantageous (Figure 7.3).

One of the limitations in current CAD systems is the lack of dualistic interpretation and

representations. A discrete vector-based representation alone may not be able to capture

many biological growth phenomena in an efficient and dynamic manner, and a generative

use of such systems as a representation of results from self-organizing phenomena may

have some limitations. A one-sided point of view may cause some deficiencies. Our

available view of the world simply does not allow us to think simultaneously in two ways.

It may be advisable to switch between two interpretations to take advantage of both

approaches, according to a given problem’s nature.

Degree of Reliance on External Knowledge

One of the unique characteristics of self-organizing computation is its non-reliance on

any external knowledge. It is a self-sufficient autonomous process and requires no recipe,

template, or typology of formal instructions for the emergence of spatial structures. In

chapter 6, all the street patterns derived were autonomously driven by the behaviors of

agents. Even some of the agents’ behaviors are stimulated by environmental changes and

indirectly derived. The system has absolutely no knowledge about whether the

Chapter 7: Conclusions

290

intersections have a radial or grid pattern, or rural or urban settings. This is the major

difference from the aforementioned L-system and shape grammar-based approaches.

Imposing existing design patterns or transformation sequences is beneficial when one

wants to efficiently derive what appear to be the subjects of our recognitions. However,

reliance on a pre-existing template might preclude the possibility of discovering what

original inputs naturally turn into. In this conceptual experiment, any imposition of

knowledge from outside of the system has been thoroughly rejected from the process.

However, subsequently, I still recognized some of the street configurations or settlement

patterns that are familiar to our perceptions. What is separating the results from direct

paths, detours, or minimal ways is a simple set of parameters. Instead of providing

predefined design templates such as grid, radial, or branching patterns, sets of parameter

values that generate agents’ behaviors are driving the resulting configurations. In this

way, the inherent characteristics of the resulting configurations are traceable back to

several parameter values that govern the behavior of the system, and certain sets of

parameters that lead to characteristics similar to existing urban phenomena can be studied.

The goal of the experiment is to derive forms from behaviors instead of supplying a

formal knowledge of design patterns at the outset.

Induction Methods

The early phase of the experiments in Chapter 6 has captured patterns seen in some

existing settlements. The results of the simulation are induced by a repertoire of a few

behaviors implemented in agents, and some of the behaviors spontaneously emerged

from a system’s growth itself. This characteristic of the system implies that some

Chapter 7: Conclusions

291

tendencies found in human design activities are, to some extent, captured or

approximated by a few repertoires of major behaviors by agents.

Of course, resulting configurations based on decisions by groups of humans are often

results of complex negotiations and superimpositions of multiple results over time, and

complete descriptions of these processes may not easily be reduced to a simple set of

parameters. However, one of the main differences from some existing city generation

software is that the system does not impose specific design templates. With a few

primary inputs related to the site’s geographical information as initial conditions, the

system can spontaneously produce all design components using self-organizing

computation.

Finding an underlying principle for generative processes of man-made design is an under-

explored area of investigation. This thesis studied the generative approach and further

explored the potential applications (by actively using computational interpretations) for a

generative approach. Whether the formation logics of man-made structures can be

reduced to a simple form of certain principles is a question. A recent paper by Schmidt

and Lipson (2009) presents a computational experiment to distill natural laws of physical

systems, such as harmonic oscillators, from motion-tracking data captured from various

physical systems. After Einstein’s theory of general relativity, we all know that even a

Newtonian interpretation of physics is not the complete description of our physical

systems. Yet it is widely accepted as a reliable means to describe dynamics of our

physical world. Furthermore, economists’ efforts to mathematically model human

decisions and to study their consequences face a similar challenge, as we are not perfectly

Chapter 7: Conclusions

292

sure artificial systems’ behaviors can be reduced to analytical descriptions based on

mathematics.

Modeling and Designing (Simulation and Generation)

Modeling is very different from designing a generative design application in architecture.

Creating new design systems that can generate adaptive, flexible, and robust design

solutions is the main goal of the thesis. As a first step toward developing generative

systems for new instances of design, the mechanisms of systems that can produce and

simulate existing instances were studied.

In experiments from Chapter 6, an earlier phase of application run has displayed

characteristics of modeling and simulation more than the later phases of them. The results

from the earlier phases were compared with actual conditions of the proposed site, and

the later phase shows the hypothetical results where incoming population and traffic

intensities of the site area continue to increase. The current site, the San Miniato area, has

a moderately settled, relatively rural condition, yet some of the results from later phases

show developments close to the typical density of metropolitan-class cities. The

simulation and prediction phases are seamlessly joined in the case of these experiments.

Various parameters that govern the agents’ local behaviors changed the later patterns of

the cities’ developments. One can decide which schemes to select by finding which

schemes induce global behavioral patterns to emerge that one prefers agents to enact.

Chapter 7: Conclusions

293

Future Research

Computational design application tools in architecture are on the brink of transition from

being mere analytical tools to becoming more creative tools that can induce emergence of

new solutions, or at least serve as “co-evolvers” of design solutions for humans. This

transition in the role of computational tools will have a big impact on our design

communities and will pose a question about what the actual roles of human design

experts in the field are. Further, the rise of collective design interface platforms may

change our current value systems in architecture and design.

This thesis has investigated computational strategies that could advance this transition

and proposed generative approaches through conceptual experiments. An obvious next

step is to find real-life scenarios to which this approach is applicable and develop feasible

systems that go beyond conceptual desktop experiments to become practical off-the-shelf

solutions. More specifically, experiments in chapter 6 primarily involved landscape—

urban design applications based on agents’ movements constrained within two-

dimensional landform surfaces. A technically challenging next step is to extend this

system’s emergent characteristics to more general design settings and purposes and

throughout different scales.

A Question about Application Scales and Areas

In human designs, as stated in chapter 2, we have witnessed more examples of emergent

phenomena from urban-scale city formations rather than building-scale applications. The

choice of the application scale for the experiments in the last chapter was also urban.

Chapter 7: Conclusions

294

However, it is not my intention to say that applications in urban-scale settings are more

suitable for methods inspired by self-organizing computation. Normally, urban growth

occurs through spontaneous processes over many years, and metabolic rates and demands

for adaptation can tolerate the time that it takes for humans to construct and alter

structures in urban scenarios. In the case of individual buildings, or clusters of a few, the

metabolic rate and demand for buildings to change can occur, for some cases, within a

shorter range of time. Even within the span of a day, some buildings face demands for

changes (think of responding to changing external light and temperature), and buildings’

components therefore need more active mechanisms for adaptation, rather than requiring

years for reconstruction, alterations, and demolition. Physical and technical demands are

obviously higher for these scales of applications than for complete urban scenarios. This

reality explains the current interest in many self-reconfigurable systems among computer

scientists and some architectural thinkers. In addition, as I have reviewed in chapter 2, a

relatively low-cost and primitive housing structure, such as Kowloon Walled City,

displays a more spontaneous growth process due to its relatively simple and easy

construction methods, and this clearly illustrates a tendency. This fact leads us to have

more difficulties implementing self-organizing logics at a finer physical scale (for

aggregations of subunit components) and with a shorter time scale for changes.

Achieving more active and rapid reconfiguration at a finer scale is also an immense

mechanical challenge with our currently available technology. As a result, we seemingly

find more opportunities in urban-scale applications with this logic.

However, as regards constructing design strategies spatiotemporally, incorporation of

self-organizing methods is effective regardless of the scale of applications. Physical and

Chapter 7: Conclusions

295

tectonic demands will vary, depending on a time scale for growth of systems, but primary

conceptual design directions can be enriched by adaptation of methods inspired by self-

organization. Rather than imposing recipes or templates, this thesis has looked at

inductive design methods based on self-organizing computation. The results have shown

unmistakably that the behavioral implementation can induce configurations like those

found in man-made systems. Further active uses of this knowledge to generate instances

from unknown conditions can confidently be anticipated.

Appendix: List of Figures

296

List of Figures

This appendix lists the credits for the figures contained within the thesis. All figures not
listed below were produced by the author.

1.1 http://images.travelpod.com/users/ditchthecube/5.1265552228.1_housing.jpg
2.2 http://en.wikipedia.org/wiki/Image:Termite_Cathedral_DSC03570.jpg
2.3 Theraulaz and Bonabeau, (1995a).
2.7 Lipson, (2005).
2.8 Yatsuka, (1997).
2.9 Shiokawa, et. al, (2000).
2.10 Nomura et al. 2006
2.11 Lipson, (2000).
2.12 Bowdon et al, (1997).
2.13 Left: http://reprap.org/bin/view/Main/WebHome (RepRap, 2010).

Right: Malone and Lipson, (2006).
Bottom: Malone and Lipson, (2005).

2.15 Lambot, (1999).
2.16a ibid.
2.16b ibid.
2.17a ibid.
2.17b ibid.
2.19 Gassel, (1979).
2.20 Barros and Sobreira, (2002).
2.21 ibid.
2.22 Muller and Parish, (2001).
2.23 ibid.
2.24a Alexander and Manheim, (1962).
2.24b ibid.

3.1 Katoh, (1980).
3.12 Top-left: http://www.auto desk.com (AutoDesk co. ltd.)

Top-middle: http:// www.hitachi-kokusai.co.jp/goyo/html/kaiseki.html
Top-right & Bottom-left: http://forum8.co.jp (Forum8 co. ltd.)

3.16 Kirchner, Nishinari, and Schadschneider, (2002).
3.17 Left: http://www.optimalsolutions.us.

Middle & right: http://www.fe-design.de (Fe-Design GmbH, Germany).
3.19 Nowak, (2006).
3.20 Brand, (1997).

4.3.1 Left and Middle: Sanders, (2000).

5.1 http://irishabroad.blogspot.com
5.2 Costa, (1977).
5.3 Top-left and bottom: GoogleEarth, (2010)

Top-right: http://www.panoramio.com/photo/4720638
5.4 Mykonos
5.x Left: Fanelli, (1990).
5.x Ferguson, et al. (1990); and Brant, (1994).

References

297

References:

Abelson H. and diSessa A. (1982). Turtle geometry. MIT Press, Cambridge.

Alexander, Christopher, and Marvin L. Manheim (1962). The Use of Diagrams in Highway Route
Location. Civil Engineering Systems Laboratory, Massachusetts Institute of Technology,
1962. Research Report R62-3.

Alexander, Christopher, (1965). A city is not a tree, Architectural Forum, vol. 122, No 1, April
1965, pp 58-62 (Part I), vol. 122, No 2, May 1965, pp 58-62 (Part II)

Alexander, Christopher (1966). From a set of forces to a form." In Gyorgy Kepes (Ed.), The Man-
Made Object (pp. 96-107). New York: George Braziller.

Alexander, Christopher (1964). Notes on the Synthesis of Form. Cambridge, Harvard University
Press.

ARES Project. (2007). [Online]. Available: http://www.ares-nest.org/ The ARES modular
microrobotic system in various configuration in the GI tract. ARES images courtesy Paolo
Corradi, Scuola Superiore Sant’Anna, Italy.

Arduino, (2010). http://www.arduino.cc [Accessed 6-25-2009].

Barros, J. and Sobreira, F., (2002), City of Slums: self-organization across scales. Centre for
Advanced Spatial Analysis – CASA, University College London, Working Papers.

Batty, M. and Longley, P. (1994). Fractal Cities: A Geometry of Form and Function, Academic
Press, San Diego, CA and London.

Batty, M. (2006). Cities and Complexity: Understanding Cities with Cellular Automata, Agent-
based models, and Fractals, Cambridge, MA. MIT Press.

Benenson, I. and Torrens, P. (2004). Geosimulation: Automata-based modeling of urban
phenomena. :Wiley.

Bonabeau, E., Doringo, M. and Theraulaz, G. (1999). Swarm Intelligence: from natural to
artificial intelligence. Oxford University Press. New York.

Bonabeau, E., Guérin, S., Snyers, D., Kuntz, P., Theraulaz, G. (2000). Three-dimensional
architectures grown by simple ‘stigmergic’ agents, Biosystems, 2000 - Volume 56, Issue 1,
March 2000, Pages 13-32, Elsevier.

Bongard J., Zykov V., Lipson H. (2006), Resilient Machines Through Continuous Self-Modeling,
Science Vol. 314. no. 5802, pp. 1118 - 1121.

Boulding, Kenneth E. (1996). Evolution, order, and complexity. London; New York: Routledge.

Bowden, N. et al, (1997). Self-Assembly of Mesoscale Objects into Ordered Two-Dimensional
Arrays, Science 11 April 1997 276: 233-235

References

298

Brand, S. (1994). How Buildings Learn: What Happens After They're Built. New York: Viking.

Caldas, Luisa G. and Norford, Leslie K. (1999). A Genetic Algorithm Tool for Design
Optimization, Media and Design Process [ACADIA ‘99 / ISBN 1-880250-08-X] Salt Lake
City 29-31 October 1999, pp. 260-271

Caldas, Luisa Gama and Norford, Leslie K. (2002). A design optimization tool based on a genetic
algorithm, Automation in Construction 11 (2) (2002) pp. 173-184

Camazine, Deneubourg, Franks, Sneyd, Theraulaz, Bonabeau, (2002). Self-organization in
Biological Systems, Princeton University Press. Princeton, New Jersey.

Costa, Paolo, (1977). Yemen, land of builders, London, Academy Editions

Damlūji, Salmá Samar, (1992). The valley of mud brick architecture: Shibām, Tarīm & Wādī
Hadramūt: ancient to contemporary design, Reading, UK. Garnet Publishing Limited.

Daniela Rus, Zack Butler, Keith Kotay, Marsette Vona, (2002), Self-reconfiguring robots,
Communications of the ACM, Volume 45, Issue 3, March 2002.

Dawkins R. (1976). Selfish Gene, Oxford; New York: Oxford University Press.

Deneubourg, J. et al. (1990). The Dynamics of Collective Sorting: Robot-Like Ants and Ant-like
Robots, Simulation of Adaptive Behavior: from animals to animats, Cambridge, MA, MIT
Press.

Di Caro, G., and Dorigo, M. (1997). AntNet: A Mobile Agents Approach to Adaptive Routing,
Technical Report IRIDIA/97-12. Universite Libre de Bruxelles, Belgium, 1997

Dorigo, M. (1992). Optimization, Learning and Natural Algorithms, PhD thesis, Politecnico di
Milan, Italy.

Duarte, J. P. et al., (2007). Unveiling the structure of the Marrakech Medina: A shape grammar
and an interpreter for generating urban form, artificial Intelligence for Engineering Design,
Analysis and Manufacturing, Cambridge University Press.

Dudnik, Elliott E. and Schachtel, Wayne, (1974). A computer aided land use study technique
Annual ACM IEEE Design Automation Conference archive, Proceedings of the 11th Design
Automation Workshop table of contents, Pages: 237 – 247, IEEE Press Piscataway, NJ.

Fab@Home. (2010). http://www.fabathome.org/ [Accessed April 25, 2010].

Fanelli, G. (1990). Toscana, Francesco Trivisonno Firenze : Cantini.

Kepes, G. (1966). The Man-made Object, New York, G. Braziller.

FE-Design GmbH, (2010). [software company]. http://www.fe-design.com/ [accessed April 25,
2010].

Fonseca, C. M., and Fleming, P. J., (1995). ‘‘Multi-Objective Genetic Algorithms Made Easy:
Selection, Sharing and Mating Restrictions,’’ Proc. of 1st Int. Conf. on Genertic Algorithms in
Engineering Systems: Innovations and Applications, IEE Conf. Pub, 414, pp. 45–52.

References

299

Franpton, K., (1992). Modern Architecture: A Critical History. New York, NY. Thames and
Hudson.

Ferguson, T. J., Mills, B. j., and Seciwa, C. (1990). Contemporary Zuni Architecture and Society,
Pueblo Style and Regional Architecture, New York: Van Nostrand Reinhold. pp103-121.

Focas, C. et al. (1998). The four world cities transport study, London: Stationery Office.

Gilbert, N. and Troitzsch, K. G. (2005). Simulation for the Social Scientist. Open University
Press.

Hall, E. T. (1969). The Hidden Dimension, Garden City, New York: Doubleday,

Haken, H. (1983). Synergetics, Berlin: Springer-Verlag.

Helbing, D. and Molnár, P. (1995). Social force model for pedestrian dynamics Phys. Rev. E 51
4282-6.

Helbing, D. (1997). Self-organization of observed collective behavior of pedestrian
Verkehrsdynamik, Berlin, Germany: Springer.

Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of escape panic,
Nature 407, 487

Helbing, D., Farkas, I. J., and Bolay, K. (2001). Environment and Planning B, 2001, Self-
organizing pedestrian movement, Environment and Planning B: Planning and Design 2001,
volume 28, pages 361 ^ 383.

Holland, J. (1992). Genetic Algorithms, Scientific America, July 1992.

Hornsby, Gregory S. and P. Jordan. B. (2001). The Advantages of generative Grammatical
Encodings for Physical Design, Congress on Evolutionary Computation.

Hornby, Gregory S. (2003). Generative Representations for Evolutionary Design Automation.
Ph.D. Dissertation, Brandeis University Dept. of Computer Science.

Isozaki, A. (1967). Time Factor on Architectural Planning (Features Symposium), Kenchiku-
zasshi, Architectural Institute of Japan, vol. 82(986), 1967-09-20, pp608-609.

Isozaki, A. (1972). Kuukannhe, Bijyutu-shuppann-sha, 1971.

Kaandorp, J. (1994). “Fractal Modeling: growth and Form in Biology”, Springer-Verlag.

Kahneman, D. and Tversky, A. (1979). Prospect Theory: An Analysis of Decision under Risk",
Econometrica, XLVII (1979), 263-291.

Katoh, I. et al. (1980) Characteristics of lane formation, Nihon Kenchikugakkai Ronbun
houkokushu, No289, p121

Kauffman, Stuart, (1993). Origin of Order, New York: Oxford University Press.

References

300

Kauffman, Stuart, (1995). At Home in the Universe: the Search for Laws of Self-organization and
Complexity, Oxford; New York: Oxford University Press.

Kauffman, Stuart, (2000). Investigations, Oxford; New York: Oxford University Press.

Kauffman, Stuart, (2008). Reinventing the sacred: a new view of science, reason and religion,
New York: Basic Books.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. Proc. IEEE International
Conf. on Neural Networks (Perth, Australia), IEEE Service Center, Piscataway, NJ, (in
press).

Kraitchik, M. §8.4.1 in Mathematical Recreations. New York: W. W. Norton, pp. 209-211, 1942.

Kirchner, Ansgar, Nishinari, Katsuhiro, and Schadschneider, Andreas, (2002). Friction effects
and clogging in a cellular automaton model for pedestrian dynamics, Statistical Mechanics
Institut f¨ur Theoretische Physik, Universit¨at zu K¨oln D-50937 K¨oln, Germany, (Dated:
February 1, 2008).

Konaka, Abdullah, Coitb, David W. and Smith, Alice E. (2006). Multi-objective optimization
using genetic algorithms: A tutorial, Reliability Engineering and System Safety 91, 992–1007

Kroll, L. (1987). Architecture of Complexity, Cambridge, MA. MIT Press.

Lambot, I. and Girard, G. (1999). City of Darkness: Life in Kowloon City, Watermark pub.

Larson, C. R. and Odoni, R. A. (1981). Urban Operations Research: Logistical and
Transportation Planning Methods. New Jersey: Prentice-Hall.

Le Bon, G. (1896). The Crowd: A Study of the Popular Mind.

Lindenmayer A. and Prusinkiewicz P. (1990). The Algorithmic Beauty of Plants, Springer-Verlag,
New York.

Lipson, H., Pollack J. B., (2000). Automatic Design and Manufacture of Artificial Lifeforms,
Nature 406, pp. 974-978.

Lipson H. et al, (2005) Self-reproducing machines, Nature Vol. 435 No. 7038

Malone E., Lipson H., (2005) Freeform Fabrication of Ionomeric Polymer-Metal Composite
Actuators, Proceedings of the 16th Solid Freeform Fabrication Symposium, Austin TX, Aug
2005, pp. 484-502

Malone E., Lipson H., (2006) Fab@Home: The Personal Desktop Fabricator Kit, Proceedings of
the 17th Solid Freeform Fabrication Symposium, Austin TX.

Maréchaux, Pascal, (1998). Yemen, Phebus Editions, Paris.

Mataric, M. (1995) Designing and Understanding Adaptive Group Behavior, Adaptive Behavior
4:1, Dec, pp. 51-80.

Maynard Smith, J. (1982) Evolution and the Theory of Games. Cambridge University Press.

References

301

Merks, R.M.H., (2003). Branching growth in stony corals: a modelling approach. Ph.D. Thesis,
University of Amsterdam.

McNeel, R. (2007). RHINOCEROS©: NURBS modeling for Windows [computer software].
http://www.rhino3d.com.

Microsoft Corporation, (2010). http://msdn.microsoft.com/library/z1zx9t92(VS.100).aspx
description of Visual C# programming language. [Accessed April 25, 2010].

Minsky, Marvin and Papert, Seymour, (1972). (2nd edition with corrections, first edition 1969)
Perceptrons: An Introduction to Computational Geometry, The MIT Press, Cambridge MA

Mitsui, Ohsaki, Ohmori, Tagawa, Homma, (2004). Heuristic Methods for Optimization of
Structural Systems, Corona publishing co., ltd. Tokyo Japan.

Muller, P., Wonka, P., Haegler, S., Ulmer, A., and Van Gool, L. (2006). Procedural Modeling of
Buildings. In Proceedings of ACM SIGGRAPH 2006 / ACM Transactions on Graphics.

Murata, S. (2006). Modular Structure Assembly Using Blackboard Path Planning System.
ISARC2006, Tokyo Institute of Technology, Interdisciplinary Graduate School of Science
and Engineering.

Narahara T. and Terzidis, K. (2006). Multiple-constraint Genetic Algorithm in Housing Design,
International Conference, Synthetic Landscapes | Digital Exchange, Louisville (USA) 12-15
October.

Nicolis, G., and Prigogine, I. (1977). Self-Organization in Non-Equilibrium Systems. New York,
NY: Wiley & Sun.

Nihon-kenchiku-Gakkai (1994). Kenchiku shiryou shuusei. Tokyo, Japan.: Maruzen.

Nowak, M. A. and May, R. M. (1992) Evolutionary Games and Spatial Chaos, Nature,
359(6398), 29 October, pp. 826-829.

Nowak, M. A. (2006). Evolutionary Dynamics: exploring the equations of life, The Belknap press
of Harvard University Press.

Ohuchi, Yamamoto, Kawamura, (2002). Theory and Application of Multi-agent Systems –
Computing Paradigm from Complex System Engineering, Corona publishing co., ltd. Tokyo
Japan.

OpenGL, (2010). http://www.opengl.org/documentation/current_version/ The Industry's
Foundation for High Performance Graphics. [Accessed April 25, 2010].

Open Toolkit Library (OpenTK), (2008) http://www.opentk.com/ [Accessed April 25, 2010].

Parish, Y. I. H., and Muller, P. (2001). Procedural modeling of cities. In Proceedings of ACM
SIGGRAPH 2001, ACM Press, E. Fiume, Ed.,301–308.

Portugali, J. (2000), Self-organization and the City, London, Springer-Verlag.

References

302

Portugali. J. (2006). Complex artificial environments: simulation, cognition and VR in the study
and planning of cities, Berlin: Springer.

Prigogine, I. and Stengers, I (1984). Order Out of Chaos, Bantam.

Prokopenko et al, In John Fulcher (ed.) (2006), Self-Organizing Impact Sensing Networks in
Robust Aerospace Vehicles, Advances in Applied Artificial Intelligence, 186-233, Idea
Group, 2006.

Quarantelli, E. (1954). The Nature and Conditions of Panic. The American Journal of Sociology,
60(3): 267-275, 1954.

Radford, Antony D. and Gero, John, S. (1980). On optimization in computer aided architectural
design, Building and Environment, Volume 15, Issue 2, 1980, Pages 73-80.

Reis, George E. (1975). Dense Packing of Equal Circles within a Circle, Mathematics Magazine,
Vol. 48, No. 1 (Jan., 1975), pp. 33-37, Published by: Mathematical Association of America.

RepRap. (2010). http://reprap.org/wiki/Main_Page, [Accessed April 25, 2010].

Revit architecture, (2010). © Copyright 2010 Autodesk, Inc. [computer software].
http://www/Autodesk.com/RevitArchitecture. [accessed April 25, 2010).

Sakai, K. (2005). Dynamics Animation using OpenGL, Morikita publishing co., ltd. Tokyo Japan.

Sakai, K. (2008). 3D Computer Graphics and Animation using OpenGL, Morikita publishing co.,
ltd. Tokyo Japan.

Sander, L. M. (2000). Contemporary Physics, Volume 41, Issue 4 July 2000, pages 203 – 218

Schaffer, J. D., (1985). Multiple Objective Optimization with Vector Evaluated Genetic
Algorithms, Proc. of Ist. Int. Conf. on Genetic Algorithms, J. J. Grefenstette ~ed., Lawrence
Erlbaum, pp. 93–100.

Schaur, Eda, (1991). Non-planned settlements: Characteristics features – path system, surface
subdivision, Editor Frei Otto, volume 39 of Institute for lightweight structures (IL),
University of Stuttgart, Germany.

Schmidt M., Lipson H. (2009) Distilling Free-Form Natural Laws from Experimental Data,
Science, Vol. 324, no. 5923, pp. 81 – 85.

Schoonderwoerd, R., Holland, O., Bruten, J., and Rothkrants. L., (1996). Ant-Based Load
Balancing in Telecommunications Networks, Adapt. Behav. 5 pp. 169-207

Schweitzer, F. and Schimansky-Geier. L. (1994). Clustering of “active walkers” in a two
component system. Physica A 206, 359–379.

Shiokawa, Takashi. et al. (2000). Automated construction system for high-rise reinforced
concrete buildings, Automation in Construction 9_2000. pp. 229–250

Shiokawa, Takashi. (2004). Analysis of the improvement process and evaluation by the
construction process and the man-hour: A study on development and application of a building

References

303

automation construction system: Part 1, Journal of Structural and Construction Engineering
(Transactions of AIJ), vol.; no.582; pp15-22

Simon, H. A. (1969). The sciences of the artificial, Cambridge, Massachusetts: MIT Press.

Sommer, R. (1969). Personal Space, The behavioral basis of design. Englewood Cliffs, New
Jersey: Prentice Hall Inc.

Sugihara, K. (2006). A mathematical Principle of Geometry and Dynamics — Geometry as a
means to explore Engineering, Tokyo, Japan, Tokyo University Press.

Tamaki, H., Kita, H., and Kobayashi, S. (1996). Multi-Objective Optimization by Genetic
Algorithms: A Review, Proc. of 1996 IEEE Int. Conf. on Evolutionary Computation, pp.
517–522.

Terzidis, K. (2006). Algorithmic Architecture. Burlington, MA. Architectural Press.

Terzidis, K. (2009). Algorithms for Visual Design Using the Processing Language, Indianapolis:
Wiley Publishing, Inc.

Theraulaz, G. and Bonabeau, E. (1995a). Coordination in Distributed Building, Science, 269: pp.
686-688.

Theraulaz, G. and Bonabeau, E. (1995b). Modeling the collective building of complex
architectures in social insects with lattice swarms, Journal of Theoretical Biology.

Turing, A. (1952). The chemical basis for morphogenesis. Philosophical Transactions of the
Royal Society of London 237:37-72.

Turner, A and A. Penn (2002). Encoding natural movement as an agent-based system: an
investigation into human pedestrian behaviors in the built environment. Environment and
Planning B: Planning and Design. 473-490.

Tversky, A. & Kahneman, D. (1991). Loss Aversion in Riskless Choice: A Reference Dependent
Model. Quarterly Journal of Economics 106, 1039-1061.

Varanda, Fernando, (1982), Art of building in Yemen, Cambridge, MA. MIT Press.

Warneke, B. et al, (2001) Smart Dust: communicating with a cubic-millimeter computer,
Computer IEEE On page(s): 44-51, Volume: 34, Issue 1, Jan 2001

Werfel, J. and Nagpal, R. (2006). Extended Stigmergy in Collective Construction, IEEE
Intelligent Systems 21(2): 20-28.

Weber, B., Müller, P., Wonka, P., and Gross, M. (2009). Interactive Geometric Simulation of 4D
Cities, EUROGRAPHICS 2009 / P. Dutré and M. Stamminger (Guest Editors) Volume 28,
Number 2.

Werner, B. (1997). Mies van der Rohe. Berlin, Germany: Birkhauser Verlag.

Wilensky, U. (1999). NetLogo. http://ccl.northwestern.edu/netlogo/. Center for Connected
Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.

References

304

Witten, Jr, TA. and Sander, L. M. (1981) Diffusion-Limited Aggregation, a Kinetic Critical
Phenomenon, Physical Review Letters.

Yatsuka, H. and Yoshimatsu, H. (1997). Metabolism: senkyūhyaku rokujū-nendai Nihon no
kenchiku avangyarudo, Tokyo: Inakkusu Shuppan.

Relevant Publications by Author

305

Relevant Publications by the Author

Narahara T. (2010). Design for Constant Change: Adaptable Growth Model for Architecture,
International Journal of Architectural Computing (IJAC), IJAC 8-1.

Narahara T. et al. (2009a). Book Chapter in Computational Constructs: Architectural Design,
Logic, and Theory, (This publication is coordinated between MIT Design and Computation
Group and Digital Architecture Group of World Association of Chinese Architects (WACA)
and is funded by WACA.) The China Architecture and Building Press, China.

with Yoshihiro Kobayashi, Kostas Terzidis, et. al. (2009b). World8: International Working Group
for New Virtual Reality Applications in Architecture, Proceedings of CAAD Future09
Conference, “Joining languages, cultures and visions”, Montreal, Canada, June 17-19..

Narahara T. (2009c). Bottom-up Design Inspired by Evolutionary Dynamics, Proceedings of
eCAADe 2009: (Education and Research in Computer Aided Architectural Design in
Europe), Computation: New Realm of Architectural Design, Istanbul, Turkey, September 16-
19.

Narahara T. (2008). New Methodologies in Architectural Design inspired by Self-Organization
Proceedings of ACADIA (The Association for Computer-Aided Design in Architecture),
Silicon + Skin: Biological Processes and Computation, Minneapolis (USA) October 2008..

Narahara T. (2007a). The Space Re-Actor: Walking a Synthetic Man through Architectural Space,
MS thesis, Massachusetts Institute of Technology, Cambridge, MA.

Narahara T. (2007b). Enactment Software: Spatial Designs Using Agent-based Models,
Proceedings of AGENT 2007: Conference on Complex Interaction and Social Emergence.
Sponsored by Argonne National Laboratory and Northwestern University, Northwestern
University, Norris Center, Evanston, November 15-17.

with Griffith, K., (2007c). Standardized Algorithms and Design Descriptions for “one-off”
designs, Proceedings of MCPC 2007: World Conference on Mass Customization &
Personalization. MIT Cambridge, Boston, October 7-9, 2007 at the Massachusetts Institute of
Technology.

Narahara T. (2007d). The Space Re-Actor: Walking a Synthetic Man through Architectural
Space, Proceedings of 25th Education and Research in Computer Aided Architectural Design
in Europe (eCAADe) Conference, Frankfurt, Germany, September 26-29.

Narahara T. and K. Terzidis, (2006a). Multiple-constraint Genetic Algorithm in Housing Design,
Proceedings of the Association for Computer-Aided Design in Architecture (ACADIA)
International Conference, Synthetic Landscapes Digital Exchange, Louisville (USA) 12-15
October 2006, pp. 418-25.

Narahara T. and K. Terzidis, (2006b). Optimal Distribution of Architecture Programs with
Multiple-constraint Genetic Algorithm, Proceedings of International Conference, SIGRADI
2006, Post Digital, Santiago (Chile) 21-23 November 2006.

